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ABSTRACT

This work presents a new approach to the integration of manufacturing activities.

The manufacturing environment has capitalized on the use of automation to evolve to a

highly specialized state characterized by heterogeneous systems providing computer

support to the various activities. Conventional approaches to integration assume that

these activities must continue to exist in their current relationships. We use a database

approach to the integration problem which removes the traditional boundaries between

activities. We develop a data model which captures more of the semantics of the

manufacturing environment than existing models and allows us to take a data-oriented

perspective of the activities it encompasses. We also show how the use of the

data-oriented approach provides for integration of these activities and reduces the

complexity of the manufacturing environment.
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I. INTRODUCTION

A. BACKGROUND

Computers have established themselves as powerful tools in the attempt to drive

down costs and improve efficiency in the manufacturing environment. To date, their

application has been piecemeal, they are not part of a concerted effort to integrate

business activities [Ref. 1]. The goal of this research is to examine the potential for use of

data modeling aspects of database technology in integrated manufacturing, in particular

the data interactions which form the basis of an integrated system. Alternative

approaches to integration which utilize advanced database and artificial intelligence

technologies are explored. The focus of the research is on developing a data model for

the approach we deem most feasible. The research includes an extensive study of the

current manufacturing functions and semantic data modeling.

B. THE PROBLEM

The introduction of intelligent integrated automation into the factory has the

potential to increase efficiency and optimize utilization of resources, the two most

important concerns of a manufacturing company trying to keep up with the pace of a

rapidly changing marketplace. Within the past decade, product development has evolved

from a simple communication process between design engineer and mechanic to a

complex system utilizing highly specialized personnel, state-of-the-art automation and

communications technology and highly sophisticated manufacturing tools. As businesses

grew, tasks were divided up and allocated to people with special skills. The resulting

improvement in efficiency was offset by the creation of more complex systems for

moving materials and information, causing greater administrative overhead. More work

was created in the control and management of the resulting complexity. Few people had

insight into more than just a small part of the manufacturing process. Manufacturing
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problems were treated singularly rather than being viewed in the context of the entire

process, which resulted in the introduction of automation to improve the performance of a

small, often self-contained area within a company. The overall effect on performance

generally fell short of the potential that could have been achieved by looking at the

process as a whole from the start. The fact that automation was introduced provided an

opportunity to simplify the overall functions of the manufacturing process. Instead, it was

treated as a simple machine replacement process. Another problem inherent in those

companies was the Just in Case philosophy of production which further complicated the

overall system because of the need for buffering inventory at every point where

production could be interrupted. Raw materials, material in progress, work in progress,

finished parts, and finished products were held just in case interruptions occurred.

Managers recognized that tighter control over manufacturing operations was necessary to

survive in a competitive environment characterized by rising salaries, falling prices, and

diminishing market shares. This realization led to the use of computers to support various

functions across the manufacturing spectrum in hopes of achieving control. [Ref. 1]

The use of computers made the concept of dynamically programmable

manufacturing tools a reality. Paper-tape driven numerical control (NC) machines

logically evolved into computer numerical control (CNC) machines. Design functions

b'_came highly specialized and efficient when augmented with Computer Aided Design

(CAD) technology. Manual accounting and inventory systems were replaced by

management information systems to increase the management span of control over the

rapidly expanding business. The result of this massive application of computers was

substantial improvements in productivity, quality, cost reductions, and other factors vital

to achievement of business goals, and an automation program which was highly

fragmented and difficult to control [Ref. 2].

Many of the automated functions were supported by mutually incompatible

computers, control devices, and automated machines, most of which could not

communicate or exchange data with other systems. Thus, the order flow from customer

to shipping dock and the information flow between engineering and manufacturing were

2



severely fragmented. The solution to restoring the communication and material flows

involves the integration of these currently heterogeneous systems using a concept called

Computer Integrated Manufacturing (CIM) [Refs. 1, 2]. Using this concept, which will

be discussed in detail in Chapter ll, links are formed between existing islands of

automation, gradually evolving towards a totally integrated system.

The alternatives to integration presented here all focus on implementing the CIM

concept. Once a manufacturing company makes the decision to implement Computer

Integrated Manufacturing technology, the implementation strategy must be determined.

The complexity of the manufacturing process dictates that the integration implementation

be modular and phased in from the lowest level of operation. In some cases, low-level

functions will need to be completely redefined in order to take advantage of CIM

technology. The company will experience the initial turmoil caused by changes in

operating procedures, the learning curve for new skills, and the anticipation of impending

control.

On the other hand, the company will have better control of information and will

make better decisions as a result. The availability of relevant information will permit

employees' time to be spent more productively and use of other manufacturing resources

will be optimized as well.

The successful integration of product design and manufacturing functions requires a

complete understanding of the relationships of data produced and used throughout the

product life cycle and some mechanism to translate product design data into a form which

is useful in the manufacturing process.

A major difference in our work from that of previously published CIM data

modeling work is that the modeling technique we propose is capable of describing the

structural aspects of products as well as their production processes. This uniformity will

enable us to integrate different manufacturing functions in a clear and natural manner.

Our approach can be characterized as data-oriented since we identify the data

requirements of various manufacturing functions and attempt to create a common data

manager for them, whereas other efforts can be characterized as process-oriented, since

3



they attempt to integrate different functions by creating an interface between them,

assuming that the data management is effectively handled by the relational DBMS. But

the relational DBMS is not a panacea. The traditional relational data manager is simply

not capable of expressing complex objects and relationships that exist in the

manufacturing environment.

We divided the basic manufacturing activities into four simple stages based on the

type of function they performed (see Figure 1). We then proceeded to identify the data

requirements of each stage. The benefit of our approach is clear: theirs is evolutionary

while ours is revolutionary. In our opinion, there is nothing to be gained by evolving the

currently highly fragmented state of manufacturing. It is much more beneficial to attack

the problem from a fresh viewpoint.

-Dmgn IProduct

-E ngm ig Design

PRODUJCT
DEMANDOI] -r n

MacTool Shsetu ProductionBuies lwor
"- i Planning - Activities Pu ing

1Handing -payrol

- Shipping

o mac o Production
- ' Monitoring

Figure 1. Stages of Manufacturing

This research in data modeling for CIM is just the beginning of an even larger effort

to develop an advanced database management system using database engineering

techniques [Ref. 3]. This database management system will be able to handle advanced

application areas such as tactical weapons systems, industrial manufacturing systems, and

-D, ........... . . .m - I I [ l~ ii 
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integrated corporate information systems. In current practice, the data for these

applications are either handled manually or by a specialized file manager. The

requirements for an advanced database management system have been identified in

[Ref. 3] and provide direction for the overall research effort.

In this dissertation, we will categorize the different approaches to integrating

manufacturing functions and discuss two of these approaches in detail. We will describe

the data model we have developed to achieve integration, and describe how this data

model supports the manufacturing environment.
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II. STATE-OF-THE-ART MANUFACTURING

A. INTRODUCTION

The role of automation in the operations of a manufacturing company can be best

portrayed by describing the various functions and activities involved in the design and

development of a product. The functions and activities comprise the product life cycle.

Figure 2 depicts the product life cycle, as formulated in this thesis. We view the life cycle

as a series of activities, each interacting with one or more other activities in the cycle.

deinengineering diin

I Input to the cycle consists of information about prospective markets and customer

desires, also known as the demand for the product. It is this demand which drives the

decision-maing process to determine in what ways the product life cycle will beactivated and controlled.

The activities involved in the product life cycle can be further broken down into the

basic processes performed within a factory. These include design engineering, process

planning, NC machine programming, robot programming, quality control, shop floor

management, marketing, sales estimating, order processing, master scheduling, material
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requirements planning, plant maintenance, shipping, inventory management, purchasing,

and accounting. These processes have been grouped in many different ways forming the

functions known as Computer Aided Design (CAD), Computer Aided Manufacturing

(CAM), Computer Aided Process Planning (CAPP), Group Technology (GT), Flexible

Manufacturing Systems (FMS), and others. In forming these groupings, the basic

processes have not been treated consistently. In some cases material requirements

planning is considered part of CAM, others consider it part of CAPP, still others consider

it the hub around which the other processes revolve. One of the major problems

associated with integrating manufacturing functions (or processes) is that the definition of

what constitutes a function is not standard within the manufacturing industry. We will

provide definitions for the functions which are most prevalent in our research.

Figure 3 shows the basic processes partitioned into CAD, CAM, FMS, and

Business. Our discussion of the manufacturing environment will assume the groupings

shown in the figure.

B. COMPUTER AIDED DESIGN

1. The Design Process

The design process starts with the definition of a need which can be satisfied by

some product. The definition of this need may involve many people and a lot of time, or

may be developed by one person in a short period of time. A general concept of a product

is formulated and refined from this definition, eventually producing a specification for the

product. Figure 4 illusrates this process.

Note that at any point in the design process, the next step could be to go back

to a previous step, reformulate, and work forward again. Design is much more than a

simple serial process since each step depends on the result of the previous one and may in

fact change the previous one. In trying to formulate a general concept of a solution, it is

frequently the case that the need is not well-defined. The possible infeasibility of a design

has to be considered in the formulation of the general concept and in the development of

7
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specifications. These, and other unforeseen events, cause product design to be an iterative

process.

The design process can also be described in terms of phases, also shown in

Figure 4. The initial definition and subsequent modification of the need is done in the

requirements phase. The preliminary design phase produces a set of potential solutions to

the requirement and determines the best alternative which will establish the direction for

the detailed design. The detailed design uses the general concept from the preliminary

design phase to synthesize the assemblies and components eventually leading to detailed

specifications for a product. These specifications include choices of materials for the

individual parts, tolerances, and detailed engineering drawings of the product. Again, the

phases are strongly interconnected and interdependent upon each other.

The design process describes the gathering, handling, and creative organizing of
information relevant to the problem situation; it prescribes the derivation of decisions
which are optimized, communicated, and tested or otherwise evaluated; it has an
iterative character, for often, in the doing, new information becomes available or new
insights are gained which require the repetition of earlier operations. Some of the
operations are qualitatively logical in character, like reasoning from verbal
propositions; some are based on subjective evaluations, as in comparing or combining
unlike values; many are amenable to quantitative analysis and to computer applications,
as in optimizing an analytically formulated representation of a problem solution. For
the most part the techniques associated with each operation in the design process are of
such great generality that their usefulness is not limited to any particular step. [Ref. 4]

2. Use of Automation in Design

The availability of Computer Aided Design (CAD) has enhanced the design

process by providing design engineers with tools for generating new designs from scratch

and modifying existing designs. The existing designs can be located and modified to

accommodate new requirements or refined definitions of existing requirements. The

result can then be analyzed mathematically to check load factors, stress, etc. A major

advantage in the use of CAD technology for the design process is the increased

productivity of design engineers due to shortened development time for a product. In

addition, the automation of design data has tremendously increased its reliability and

reusability.

9



3. Classification of CAD Systems

One way to classify CAD systems is by the way they represent design objects.

Three alternative geometric representations are the two-dimensional drafting systems, and

the wire-frame, surface, and solid three-dimensional models. These representations are

stored as computer internal models [Ref. 5], whose complexity varies from one

representation to another. These computer internal models can be structured as a matrix

where the types of generated model data (e.g., cylinder, cone, prism) are listed in rows

and the computer internal representation (data structure), in columns. A significant

characteristic of a computer internal model is its parametric capability to change the

dimensions for a specified object while leaving the object's topology (general shape)

intact.

Two-dimensional drafting systems are basically automated drafting board

systems which display a two-dimensional representation of the object being designed.

Engineers using this ty"e of system generally develop a line drawing and produce a high

quality output using a pen plotter. While these systems do improve the productivity of

the designers who use them, they only produce two-dimensional drawings of

three-dimensional objects and it is up to the engineer to read the drawings and infer the

three-dimensional shape from them. An additional problem often arises because the

two-dimensional drawings are ambiguous. Most two-dimensional drafting systems use a

form of modeling called wire-frame modeling, so called because the edges of an object

are shown as lines and the image of the object appears to be a frame made out of wire. A

predominant limitation of a wire-frame model is that all the lines that define the edges and

contoured surfaces of an object are shown in the image so that the lines representing the

edges at the rear of the object show right through the foreground surfaces. This limitation

introduces even more ambiguity into the image interpretation problem. Systems which

feature hidden-line removal seek to eliminate this ambiguity by removing the hidden

background lines in the image.

Three-dimensional wire-frame modeling systems overcome some of the

limitations of the two-dimensional systems by allowing an engineer to create a full

10
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three-dimensional model of an object rather than a two-dimensional illustration. The

system can automatically generate orthogonal views (much like what the two-dimensional

system would have produced), perspective drawings, and even close-ups of detailed

portions of an image. While three-dimensional systems have these capabilities, they

generally still have the hidden-line removal problem.

Surface models represent the vertices and edges of an object in much the same

way as wire-frame models, but also include polygonal faces of three-dimensional objects

and allow the properties of those faces to be specified. These models are more complex

than wire-frame models to implement, but produce much more realistic images with the

use of hidden-line removal, colors and textures for the surfaces, shading, and cast

shadows.

The most complete kind of three-dimensional model is the solid model, with

images composed of objects which appear solid to the viewer [Ref. 6]. Like the surface

models, the solid models use color, texture, and shading to make the images appear more

realistic, which decreases the likelihood of misinterpretation. The potential for solid

modeling applications is driving the graphics technology to produce better and faster

hardware and software to provide these capabilities [Ref. 7]. One basic approach to solid

modeling is the constructive solid geometry (CSG) approach, also called the building

block approach [Ref. 8). In this approach, the engineer builds a model out of solid

graphic primitives such as rectangular blocks, cubes, spheres, cylinders, and pyramids.

An advantage of this approach is the ease in which a precise solid model can be

constructed out of the primitives by adding, subtracting, and intersecting the components.

4. Interfacing CAD Systems

A lot of effort has been put into the development of standard interface

specifications to improve communication of product design data between and within

systems. Included in these specifications are the exchange format specifications, the

geometric modeling interface specifications, and the database interface specifications.

Two projects involving exchange format specifications are the Initial Graphics Exchange

Specification (IGES) [Ref. 9] and the Product Definition Data Interface (PDDI) [Ref. 101.
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The IGES specification is considered an industry standard for the exchange of data

between systems produced by different vendors. The PDDI specification, sponsored by

the US Air Force, provides information such as tolerances, features, geometry, topology,

and part control needed by manufacturing functions.

The major geometric modeling interface specification project is the

CAM-International sponsored Application Interface Specification (AIS) [Ref. 11]. Their

objective is to provide an interface between functional application programs and

constructive solid geometry modeling systems.

One of the database interface specification projects was done at Rensselaer

Polytechnic Institute, Troy, NY, as a Ph.D. thesis involving the development of a

language for the description of data exchange between heterogeneous CAD databases

[Ref. 121.

C. COMPUTER AIDED MANUFACTURING

Consider Computer Aided Manufacturing (CAM), consisting of industrial

engineering, process planning, numerical control (NC) machine and robot programming,

quality control, master scheduling, and material requirements planning, as shown

previously in Figure 3. We will concentrate our discussion on the functions most likely to

be affected by the introduction of automation, namely process planning, NC

programming, master scheduling, and material requirements planning. Information on the

other aspects of CAM can be found in [Ref. 13].

1. Process Planning

The production cycle begins with the planning of production processes and

determination of production conditions for machine operations. Traditional process

planning is an industrial engineering activity which is performed after product design and

before production. Engineers examine a bill-of-materials (BOM) and the design

specifications and determine which operations are to be performed for each part on the

BOM, which machine will be used for each operation, and the details associated with
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tooling and other production processes. The results of the process planning function are

used by production personnel to manufacture the product. Since process planning is the

basis from which other manufacturing decisions are made, any error made at this point

will be propagated and compounded in the subsequent manufacturing functions. Process

planning is typically performed by the best manufacturing engineers, those with the most

experience. The seniority of these engineers poses a problem because retirements

frequently exceed recruitments for process planning positions, creating an ever-increasing

gap between the number of process planning jobs and the number of qualified engineers

available to fill those jobs.

The automation of process planning functions has been hampered by a limited

understanding of the skills used by human planners and the fact that existing tools to

support process planning are only partially successful. Further problems occur because of

the dynamic nature of process planning functions; inputs change frequently, outputs serve

many types of users. Most automation attempts focus on process planning as an interface

between product design and production, its traditional role [Refs. 14, 15]. These systems
mimic the way process planning was previously done, replacing human process planners

by automated and sometimes expert systems. The integration of design and

manufacturing functions in this way further compounds the islands of automation

problem associated with the introduction of automation into the factory [Ref. 16]. Other

attempts to use artificial intelligence have to deal with a solution space which is

well-populated because of the number of parameters involved in the manufacturing of a

product. In addition, the solution space is discontinuous; a change in a tolerance may or

may not cause a change in the process plan and a change in material type could have the

same effect.

One of our objectives in this research is to provide a mechanism which will

ameliorate some of these problems. We will show that the data model which we propose

for the product design environment can be adapted nicely to the process planning

environment, which is the heart of computer aided manufacturing.
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Automation has been used to try to create an efficient PP system. The

solutions obtained fall into two groups, based on the way they derive a process plan. The

first, the variant system, uses parts classification with group technology to create a new

process plan from an existing template [Ref. 17]. The template represents a standard

process plan for a group of products which have been classified into the same family.

When the production requirements for a product differ from the general requirements of

the family to which it belongs, the template is modified to create the process plan for that

product.

An alternative approach is to generate an individual PP for each product from

scratch, known as the generative approach [Refs. 17, 18]. In a generative system, the

knowledge about how products should be manufactured is stored and used with

algorithms to create a process plan. A generative system normally starts with design

information about the components of a product, information about material types and

their usage in manufacturing, and synthesizes an optimal PP. In general, systems using

the generative approach are limited to a small range of manufacturing processes because

of the complexity of the knowledge involved.

The major disadvantages of the variant method as compared with the

generative method include difficulty in accommodating the numerous combinations of

geometry, size, precision, material, quality, and shop loading, and the enormous on-line

database requirements to accommodate the stored plans.

2. NC Programming

The concept of controlling machines by programming them with a series of

alphanumeric codes emerged in the U.S. in the early 1950's [Ref. 13]. The concept is

fairly simple: control the machines using numbers to represent a desired function (e.g.,

switch on the spindle, retrieve tool X, rotate the robot wrist by 30 degrees, etc.) on a

predefined coordinate system. These computer-controlled machines can be classified into

categories based on the method by which they process workpieces.
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Point-to-point controlled machines move a slide to a discre., coordinate point

and this movement occurs with the machine tool disengaged, i.e., the tool is never in

contact with the workpiece while the slide is in motion. Typical examples of this type of

machine include an NC coordinate drilling machine with an NC controlled xy table.

In contrast to point-to-point machines, straight-line control systems allow the

tool to be in contact with the workpiece vhile the slide is moving, but the movements are

always parallel to the axes of the machine. A typical example of this type of machine is

an NC milling machine with a traverse table.

Continuous path controlled machines follow a mathematically prescribed path

where anywhere from two to six axes are controlled simultaneously while the tool is in

contact with the workpiece. This type of machine normally employs sensors to monitor

and control the operation while enhancing the safety and reliability of the machine

[Ref. 191. A typical example of this type of machine is an NC spray painting robot.

3. Master Scheduling

Scheduling is a process that relates specific events to specific times and/or time

periods. This relation involves the sequence and timing of assigning resources (i.e.,

machines, employee, etc.) to specific orders for products. Scheduling gets its prominence

from the effect that misutilization of resources and missed due dates have on the

profitability of a manufacturing company. Due to increasing costs and shrinking market

shares, a lot of emphasis is being put on this aspect of manufacturing.

The scheduling of the processes required for the manufacturing of products

involves simultaneous consideration of the processes to be performed and the resources

they require. The determination of the appropriate processes for a given product is made

during the process planning phase of product development. The scheduling problem is to

utilize resources as efficiently as possible while completing all product development as

closely as possible to their due date, minimizing in-pro-ess inventory. Resources to be

scheduled include machines, tools, raw materials, materials Li progress, storage facilities,

transportation facilities, and labor. The labor resources will generally have variable
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capacities while the machine resources will have relatively fixed capacities. The

scheduling problem assumes each resource has an operating capacity at each point in

time.

Several factors influence the approaches to solving the scheduling problem.

First, combinatorial complexity occurs in scheduling because of the large number of

schedules which assign a set of jobs to a set of resources. The scheduling problem is a

classical application area for operations research optimization techniques and is generally

known to be NP-complete [Ref. 20]. That is, even if an optimal solution could be found,

the amount of time required to compute the solution would make this type of scheduling

impractical. Hence, the operations research approaches generally produce sub-optimal

results.

Secondly, uncertainty is prevalent in the scheduling problem because of the

unforeseen events, such as machine failures, which would disrupt a schedule and create a

whole new scheduling problem. Even though all of the disruptive events can't be

predicted in advance, some approaches build slack time into the schedule to allow for

some of them.

The current approaches to the scheduling problem can be classified into several

categories, including opportunistic, optimization-based, and expert system-based. We

will briefly describe these approaches to provide a means for comparison with our

approach.

In the opportunistic approach, the number of possible schedules is reduced

prior to execution using knowledge of the current operating conditions. Once schedule

execution begins, choices are made among the alternative partial schedules so as to

maintain steady progress while maintaining the greatest number of future choices, thus

preserving flexibility in the system. In [Ref. 21], off-line reasoning is used to select an

appropriate group of partial schedule orders to be passed on-line when schedule execution

begins. Combinatorial complexity is managed by not selecting or pruning a particular

schedule from the set of possible schedules until there is good reason to do so.

Uncertainty is managed by preserving flexibility with the idea that if enough options can
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be maintained, there will always be a way to make progress in spite of the unforeseeable

problems.

The optimization-based approach formulates the scheduling problem as a linear

optimization problem and solves the problem statically using combinatorial optimization

techniques such as dynamic programming and branch-and-bound. The basic problem

with this approach is that the optimization techniques are used statically, that is, the entire

schedule is optimized for all products concerned using the current operating conditions.

When something happens on the shop floor such as a machine failure, a whole new

optimization problem exists and the schedule has to be redone.

Expert system approaches generally use heuristics which reduce the number of

possible schedules and make the scheduling problem solvable. Alternative strategies

include the use of scripts which contain the appropriate operators for a particular

scheduling situation, and constraint-driven techniques, where domain knowledge is

represented as constraints which bound and guide the search for a feasible solution, This

approach continually reduces the number of possible schedules until one acceptable

schedule remains. If an acceptable solution is not found, constraints are relaxed until

acceptable alternatives are produced.

Almost all of the previously mentioned approaches use rules to establish the

relative priority of jobs to be processed through a given work center. Some of the rules

used include giving priority to the job with the earliest due date, shortest processing time

for the work center in question, first-come-frst-served, least slack time remaining (time

until due date minus process time remaining), and least critical ratio (time until due date

divided by process time remaining). No single rule is suitable for all situations, each rule

has its merits and drawbacks. For example, using the shortest processing time rule will

generally result in the lowest manufacturing lead times and the lowest in-process

inventory, but long processing jobs will always lose out, and may never get to the front of

the queue without some type of intervention.
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4. Material Requirements Planning

The objectives of Material Requirements Planning (MRP) in CAM are to plan

and release production orders, focus on orders requiring attention, and ensure that all

parts, both manufactured and purchased, are available when the production schedule

requires them. MRP incorporates long-range business strategies, short-term tactical plans,

master schedules, and feedback on performance [Ref. 22]. The input to the MRP process

is the master schedule containing information on the quantities of each ordered product

and the dates they are scheduled for production. MRP uses bill of material, inventory

status, and order lead time information to generate a more detailed production schedule.

As production proceeds, data on the finished products are fed back into the system and

the process starts all over again.

D. FLEXIBLE MANUFACTURING SYSTEMS

A flexible manufacturing system (FMS) is a computer-controlled configuration of

semi-independent workstations and material handling systems which is designed to

efficiently manufacture multiple products at low to medium volumes. A typical

manufacturing cell consists of a numerical control (NC) machine, tool machine, a tool

magazine, a robot controlled (RC) handling device to refill the magazine, and a system for

part supply. The material handling system is responsible for part transportation, raw

material and final product transportation, and storage of workpieces, empty pallets,

auxiliary materials, waste material, fixtures, and tools. One aim of using FMS technology

is to combine the benefits of a highly productive, but inflexible transfer line with a highly

flexible, but inefficient job shop.

FMS technology changes the production philosophy of a shop from the traditional

Just-in-Case to the innovative Just-in-Time (JIT) philosophy. The Just-in-Case approach

complicates the entire production process because of the need for buffering inventory at

every point where production could be interrupted. Raw materials, (raw) material in

progress, work in progress, finished parts, and finished products are held "just in case"

interruptions occur. The recognition by managers that elimination of the buffered
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inventory would significantly cut costs led to the adoption of the Japanese Just-in-Time

production system. Other key technologies which similarly reduce costs, enhance

productivity, and operate within the FMS framework are Group Technology (GT) and

Cellular Manacturing (CM).

1. Just-in-Time

The main objective of JIT is the elimination of waste, where waste is defined as

any activity which does not add value to the product [Refs. 23, 24]. The types of

activities which fall into this category include transporting materials and parts, storing

inventory, inspection and quality control (as a separate activity), and machine setup. JIT

changes the emphasis in production from producing quantity to producing quality.

A partial solution to the main objective is to minimize manufacturing

throughput time. With traditional approaches, production lots spend most of their time in

queues, waiting to be worked on [Ref. 25]. Many manufacturers are looking at cellular or

group technology concepts to improve material flow and reduce setup time, which will

improve throughput.

2. Group Technology

Group technology (GT) is a coding and classification system used for

combining similar, often-used parts into families. The use of GT helps to standardize the

fabrication of similar parts, allowing them to be retrieved and processed in an efficient,

economical way. Depending on the type of GT implementation, parts can be grouped

into families in different ways. One common type of GT places parts in a family when

they share similarities in their design. Some of the attributes used in this grouping include

the part's basic external shape, basic internal shape, length-to-diameter ratio, and material

type. A second type of GT uses manufacturing attributes to classify parts. Among the

attributes considered in this case are the major process to be performed, minor processes

to be performed, machines and tools used, and operation sequence. In this second GT

coding scheme, parts whose major process is drilling holes are separated from those

whose major process is boring holes.
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The use of GT promotes standardization in manufacturing, which eventually

translates into improved efficiency and reduced production costs. Jigs and fixtures can be

designed to accommodate parts families thereby reducing setup time and costs. Another

benefit of the use of GT is the reduction in complexity and size of the parts scheduling

problem brought about by grouping parts into families. A 70% reduction in production

time, 62% reduction in work-in-process inventories, and 82% reduction in overdue orders

has been reported in [Ref. 261. The time and cost associated with the process planning

function itself can be reduced through the standardization achieved as a result of using

GT.

3. Cellular Manufacturina

The concept of group technology is closely related to that of cellular

manufacturing (CM). In CM, the manufacturing resources are divided into production

cells. Each cell is designed to produce a set of parts that require similar machinery,

tooling, machine operations, and/or jigs and fixtures. The objective of CM is to go from

raw material to finished part within a single cell.

While the concept of CM is theoretically appealing, in practice there may be

conditions under which it may be impossible to employ. For example, there are always

products to be produced which can't be associated with a specific production cell. In

addition, there may be machinery which can't be placed in any one cell due to its general

use, such as a spray painting booth. CM technology thus far has been applied to a limited

number of applications, the majority of which are chip producing, metal fabricating, and

assembly operations [Ref. 27].

E. BUSINESS DATA PROCESSING

The business data processing functions necessary to support the product design and

manufacturing processes include customer order processing, production of a bill of

materials for each product, capacity planning and control for the shop floor, inventory
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control, purchasing, and product costing tasks. Other functions are included as well, but

are either well known or well-explained in other references [Ref. 13].

Customer order data is used for long-range planning as well as for material

requirements planning. The long-range planning includes providing forecasts for future

order. The short-term planning provides information for capacity planning and

scheduling of resources.

Capacity planning provides data on the required machines, personnel, equipment,

and parts inventory required to manufacture products. With the JIT philosophy, a primary

concern in capacity planning is the amount of inventory to be held. Frequent checks must

be made, comparing the actual on hand levels to the planned levels, to maintain control.
Again, minimizing inventory levels keeps inventory storage costs, related capital

investments, and taxes as low as possible.

A bill of materials is a description of a designed product in which the relationships

between components, assemblies, and sub-assemblies are given in the form of a list. The

list contains information such as a part number, part description, and quantities of the part

for the entire product.

Inventory control is closely related to capacity planning. Inventory items consist of

raw materials, work in progress, parts in progress, finished products, and parts purchased

from other vendors. Besides keeping inventory levels as low as possible, inventory

control includes the administrative aspects of inventory such as recording current stock

levels, producing purchase requests, processing customer order and shipment information,

forecasting future inventory requirements, and handling the inventory portion of the

financial activities (accounts payable, accounts receivable).

Product costing involves determining the cost of every activity related to a given

product. Every part of the factory that performs these activities has to determine the cost

of doing so. Inaccurate product costing results in erroneous profit reports and

misrepresents the profitability of products and manufacturing resources to the

management of the firm. In addition, the impact on profit can not be assessed, which
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means that management decisions will be based on incomplete information and may not

take advantage of fluxuating costs appropriately.

F. SURVEY OF AUTOMATED SUPPORT FOR MANUFACTURING

The best motivation for our work can be found by surveying previous research

projects and providing an analysis of them. These research projects can be divided into

three categories. The first, functon-specIifc, consists of database work which supports

one of the basic manufacturing activities described previously. The second,

applicaton-specific, consists of database work which supports particular application areas

such as VLSI design. Projects in the third category assume that the database support for

manufacturing is already adequate.

1. Function-Specific Support

a. Support for CAD

The manufacturing function which has been the subject of the majority of

studies concerning the application of database technology is computer aided design. As

automation of the design function increases, emphasis is shifting from use of computers

as straight numerical computing devices to the definition, manipulation, and enforcement

of complex relationships among design objects [Ref. 28. The potential for computers to

assist engineers in performing design functions is placing a new requirement on data

management systems to do more than store and retrieve ordinary textual data.

One aspect of the design function which has been studied is the concept of

combining a set of engineering constraints with a database of engineering data [Ref. 29].

These constraints deal with the semamics of data and therefore define the limitations on

the values that the data can take on. The ability to enforce these constraints determines a

databases's integrity [Ref. 30]. Integrity checking has traditionally been performed by

application programs, not by the data base manager. To ensure the correctness of design

data, constraint management capabilities are being incorporated into engineering design

database management systems [Refs. 31, 32].
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Another extension to the traditional database management systems allows

for the support of abstract data types to permit the use of new data types such as polygons,

rectangles, and text strings [Ref. 33]. Current database management systems support the

use of integers, floating point numbers, and character strings, all of which are widely used

in business data processing applications. To properly model the semantics of design

objects, new abstract data types are necessary.

An alternative approach to modeling the semantics of design objects was

proposed which treat the features of the design object as primitives (Ref. 34]. The

features which a designer uses are determined by the application domain he is working in.

For example, when designing a casting, knowledge about features such as slabs and holes

are useful since these features logically symbolize casting applications in terms that the

designer understands. In this designing-with-features [Ref. 35] approach, a features

database is used to store information about the features and their relationships. Standard

operators exist to manipulate these features and relationships to build more complex

design objects.

The Integrated Programs for Aerospace-Vehicle Design (IPAD) project is

yet another approach to the limited data types inherent in the traditional database

management systems [Ref. 36]. The IPAD project designed and developed a geometry

data manager with special software driver routines which make the geometric objects

available to application programs. This project is one example of many available where

manufacturing companies have developed in-house systems to support manufacturing

functions.

[Ref. 37] and [Ref. 38] introduce the notion of complex objects as an

extension to the traditional relational system. The complex object crosses relation

boundaries and groups related tuples from any number of relations and forms a hierarchy

with a root tuple that defines the object. The defined objects are manipulated by the SQL

language using minor extensions. Tuples in the database system are divided into two

parts. The first part contains the data normally found in the data base - the data which is

of concern to the designer. The second part of a tuple contains pointer information that is
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used to link tuples belonging to the same object, information which is of no concern to the

designer.

A similar extension to the traditional relational model allowed the

integration of a constructive solid geometry [Ref. 8] scheme with a relational database

management system. The SEQUEL query language was used by this particular system

and required significant augmentation to support it. This approach has additional

overhead in that the constructive solid geometry grammar must be converted into a

generic data scheme which can be manipulated by SEQUEL. [Ref. 8] describes this

conversion process as "computationally tedious".

b. Standalone Support for Other Functions

The Ford Motor Company initiated a project to develop a manufacturing

database in response to their Basic Manufacturing Division's need for an automated

system to support retrieval of process plans and detailed tooling and machining operations

[Ref. 39]. This project used a relational database management system as the focal point

of their manufacturing information system. The role of the database management system

in this project was to replace a similar system in which manufacturing data was handled

manually. The limited scope of application of the database permitted usage of the

traditional relational system without any extension or enhancement.

The potential for database applications in flexible manufacturing systems

is greater than for possible applications in standard manufacturing functions because of

the highly automated nature of the machines and transportation systems employed in a

typical FMS cell. In [Ref. 40], the layer concept used within various areas of computer

science, such as operating systems, is adapted to FMS. Classes of objects are formed with

respect to their common properties and are stored using a relational database system with

a scheme wherein one relation represents one object class.

Process planning has been defined to be "situated at the information

crossroads between product design and the shop floor" [Ref. 41]. The use of computers

in process planning is natural because of their ability to make the numerous comparisons
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necessary to formule the best process plan in an efficient manner. Numerous projects

have been initiated which apply database technology to the process planning problem.

Lockheed-Georgia's Genplan system [Ref. 41] is a generative process planning system

which has the logic and rules of manufacturing built into it. Genplan uses a relational

database system to capture the data about manufacturing entities and their relationships

and intends to use a knowledge-base management system [Ref. 42] to keep that data

current. Several other projects have taken the same knowledge-based approach to process

planning [Ref. 43,44].

Database management systems have also been applied to

non-conventional machining processes to store machinability data [Ref. 45]. This

machinability data is used to select metal cutting parameters based on the machining

process to be performed and other major criteria such as accuracy, surface finish, power

consumption, or economy. Although machining data handbooks satisfy most of the

requirements for conventional machining processes, the automated systems support

non-conventional processes and optimize the selection of parameters, something that the

handbooks cannot do.

2. Application-Specific Support

One of the earliest efforts to develop an advanced data management system to

support advanced applications concentrated on the implementation of a CAD database for

the VLSI design environment [Refs. 46, 47, 48]. VLSI design was chosen because the

products in that environment are typically large, complex, with components

interconnected in a potentially complex manner, and therefore could not be handled by

the available database models. Although some of the earlier work used the relational

model in the underlying database system, it was recognized that this model doesn't

sufficiently capture the relationships between different relations, a fundamental

shortcoming of the relational model [Ref. 49]. Later efforts sought to overcome this

problem by using an extensible object-oriented framework to model the VLSI design

environment [Ref. 50].
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Other application-specific projects have emerged in the areas of welding [Ref.

51], metrology [Refs. 52, 53], and chemical process plant design [Ref. 54], to name a few.

Weldselector [Ref. 51] used an expert system approach to advise welding engineers on

the selection of materials used to join metals, an ordinarily complicated task which is

affected by factors such as the chemical and physical composition of the base metals, the

position of the weld, and the degree and character of atmospheric contamination. The

Weldselector program is a front end to a complex data base of information on a wide

range of base metals, e.g., over 900 varieties of steel alone. In [Ref. 52] and [Ref. 53],

research on the Automated Manufacturing Research Facility (AMRF) project at the

National Bureau of Standards is presented. A major goal of this research is to develop a

small batch manufacturing system to support research and experimentation in automated

metrology (the science of measurement) and interface standards for the factory of the

future. The major objective of the chemical process plant design project [Ref. 54] was to

specify an overall systems architecture which truly reflected engineering design practice

(the concentration of CAD work at the time was on VLSI design). This architecture was

composed of individual databases to support project-wide applications, work area

applications, and other smaller support and control applications. The research report was

only a general overview of the project -- little, if any implementation work had been done.

3. Other Automated Support

The research projects included in this category include work on communicating

manufacturing data using local area networks [Ref. 55], defining exchange formats and

interface standards for communicating manufacturing data [Refs. 56, 57, 58], plant-wide

computer control [Refs. 59, 60], use of engineering databases for decision-making

[Ref. 611, and the use of browsing techniques in manufacturing databases [Ref. 62].

The work on local area networks proposed using distributed computer systems

to place processing power where it is needed in the factory. The term "distributed" is in

contrast to the "host type" architectures [Ref. 55], which are centralized computer systems

supporting the entire spectrum of manufacturing functions.

26



Several exchange formats and interface standards have been proposed for

communicating manufacturing data between and within design and production functions.

[Ref. 56] discusses the requirements for such standards but acknowledges that: "The

current status of product data communication efforts shows the need for more efforts for

enhancing the interface specifications and turning them into standards." One such

standard is the Manufacturing Automation Protocol (MAP) [Refs. 57, 58], a network

architecture whose goal is to operate in a setting where products could be processed,

assembled, and prepared for shipping without human intervention. The cost of installing

MAP will limit its use to the automobile and aerospace industries [Ref. 57].

The use of computers to achieve plant-wide computer control is promising due

to the increasing use of automation in factories. To reach this goal, disparate processors

from different vendors must be linked to control both continuous and discrete

manufacturing processes simultaneously [Ref. 59].

Since the plant-wide computer control system will always be distributed to some
degree because of the workings of the principles of locality and of autonomy, a good
communications system will always be the heart of the overall control computer
network. Therefore, a major disappointment to this author in reviewing the current
progress and trends in the development of the new distributed control systems of the
process control systems vendors, and indeed of the whole of the process control
communications field in general, is the very wide variances in design and the
consequent lack of standardization in their intra-system data highway offerings with all
computer control systems but particularly with the new product line offerings now
available. [Ref. 60].

G. SUMMARY

We have examined the role that automation plays in the operations of a

manufacturing company by describing the major activities that make up the product life

cycle. We have surveyed some of the current automation support available for these

various activities. Our objective in this chapter was to introduce the state-of-the-art

concepts and terminology used in the manufacturing environment, many of which will be

used later in this dissertation.
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III. COMPUTER INTEGRATED MANUFACTURING

A. BACKGROUND

The manufacturing industry is heavily influenced by pressure from the marketplace

to reduce product prices while simultaneously increasing quality and responsiveness to

customer demands. Many manufacturing companies, unable to keep the pace of change,

are finding it more and more difficult to remain competitive. Solutions have been offered

by manufacturing equipment vendors, computer manufacturers, and consultants to the

problems of dealing with the broad, pervasive changes which are necessary for survival.

Manufacturers have turned to the computer, because of its widespread applicability,

as a means of easing the pressure. Most of the applications to date have been aimed at

specific manufacturing functions, such as engineering design, process planning, numerical

control, etc. The increased use of computers in these specific areas has, in general,

produced lower prices and productivity increases. However, in most cases, the actual

benefits realized have been significantly less than expected. The application of computers

in these specialized areas forms islands of automation which have contributed formidable

problems in the attempt to produce further gains.

The major problem has been that the automated machines, control devices, and

computers which form the islands of automation are acquired over time from different

vendors and are unable to communicate or exchange data with other systems [Ref. 2].

This has been a major concern because the existing investments by manufacturing

companies dictate that the multivendor, heterogeneous environment cannot be replaced in

a wholesale manner, except perhaps in a few cases. The inability of these systems to

communicate with one another has severely fragmented the information flow among

manufacturing functions. The solution to restoring communications and information flow

involves the integration of manufacturing functions using the Computer Integrated
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Manufacturing (CIM) concept. Using this concept, links are formed between existing

islands of automation, gradually evolving towards a totally integrated system.

Manufacturing companies want to link these islands of automation together into a

system that still exhibits special characteristics, allows local control, and achieves high
performance. They also want to have consistent data and control over larger portions of

their operations, which is typical of centralized systems. The variety and complexity of

the islands of automation dictate that the only workable strategy for CIM is a modular

approach to integration.

B. WHAT IS COMPUTER INTEGRATED MANUFACTURING?

There is a wide diversity of definitions of CIM in the literature. Included are:

(1) "A collection of machines tied together by a material handling systems and

controlled by a single computer or hierarchy of computers." [Ref. 63];

(2) "A production facility that consists of a group of process equipment units such as

machine tools, auxiliary equipment (inspection machines, washing stations, etc.), linked
with an automatic materials handling system that reaches every process station, the entire

facility being integrated under common computer control." [Ref. 64];

(3) "CIM is the integration of key product-related data in a company, where the
integration of various computer-based automation activities leads to improved

productivity in all business areas from marketing to product shipment." [Ref. 65];

(4) "CIM is the vehicle that links the operations of the entire company together

which results in a cohesive system." [Ref. 66];

(5) "CIM is a rounded concept that rests on a central manufacturing database.

Linked to this database will be the key functions of engineering design, manufacturing

engineering, factory production, and information management." [Ref. 67];

(6) "Computer integrated raanufacturing is the automation and integration of the

business of manufacturing from product design to distribution." [Ref. 68].
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The first two definitions imply that CIM applies to a given set of machines, such as

would be found in a FMS cell. They also emphasize the material handling system and

common computer control. Both of these definitions limit themselves to a subset of the

factory floor. The third and fourth definitions broaden the scope of CIM to include

business and other non-engineering/production functions. The fifth definition adds the

concept of a centralized database system and the sixth stresses the role of automation as

an essential element of CIM.

Webster's Dictionary defines integrated as unified or united. We maintain,

therefore, that the "integrated" in Computer Integrated Manufacturing should refer to the

unification of the processes in the factory through automation of the data interactions

between these processes. Our use of the term Computer Integrated Manufacturing or

CIM uses the word manufacturing in the broadest sense to mean the use of automation to

support all product life cycle activities, not just those concerned with the production phase

of that cycle.

No matter which definition is used, CIM has several objectives which are provided

for in all of the above definitions. One objective is to remove human intervention which

normally results in improved quality [Ref. 1]. Another objective is to manufacture

products in a flexible manner at minimum cost. Minimizing interruptions in the

production process is sometimes yet another objective. Simply stated, the goal is to

complete the production of an item in the simplest and most timely way, which will

happen when each process flows automatically into the next, without interruption. Once

CIM is implemented, the benefits will include real-time, on-line access to all data by the

people and processes which need that data, higher quality, shorter design/production cycle

time, efficient production of small batches, and faster incorporation of design changes

into the system. All of these benefits mean better response to market demand for

flexibility, quality, and fast delivery at the least cost.
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C. CURRENT APPROACHES TO INTEGRATION

Computer Integrated Manufacturing uses automation to achieve integration in a

manufacturing enterprise. The ideal CIM system would truly integrate Computer Aided

Design (CAD), Computer Aided Manufacturing (CAM), a Flexible Manufacturing

System (FMS), and business data processing functions. Currently, each of these

components is highly specialized and automated, but not fully integrated [Ref. 1]. We

will compare three alternative approaches to achieving full integration using database

technology. High-level integration interfaces one component of CIM (CAD, CAM, FMS,

or business) to another by automating the data interface between the two components.

Integration by centralized database support uses a database management system as the

hub of the overall manufacturing system so that the data which is output from a given

function is available to any other function that requires it. Low-level integration

standardizes the data interactions between manufacturing functions using a distributed

database management system so that one function can access data produced by another

function.

1. High-Level Integration

The first approach we will discuss can be described as the high-level

interfacing of the four main components of a CIM, i.e., CAD, CAM, FMS, and a business

data processing system (see Figure 5). The primary motivation behind trying to provide

for integration in this manner is to utilize as much of the existing automation investment

as possible. In addition, given the amount of time which a CIM would take to implement,

this may be a "quick fix". While this approach includes the most desirable form of

coupling, data coupling, which occurs when all data required by one function is explicitly

passed by another function, the transformations required to provide that coupling are

costly in terms of execution time. These transformations are implemented by translators

which take output data from one component and convert it into the form necessary for use

by another component. The translators would operate in one direction only and would

not provide the degree of interactivity normally required for effective decision-making.

Bidirectional communication between two components would require two translators. In
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Figure 5. High-level Integration

this high-level approach, the workings of the low-level functions within a component are

hidden from the other components and their low-level functions.

Several research projects have taken this approach. [Ref. 69] proposed linking

islands of automation using three separate interfaces. The first interface, between material

requirements planning and CAD, would be used to communicate bill of material data

from CAD to MRP. The second links MRP and the automated storage and retrieval

system to automatically transfer pick requests from MRP to the retrieval system, in lieu of

manual communication. The third link, between MRP and automatic test equipment,

serves to feed measurement data generated by the test equipment to the MRP system for

quality control functions.

The Hewlett-Packard Company produced a system called DesignCenter [Ref.

70] which provided design acceleration tools and links between various design functions.

One link was established between software design and hardware logic design and

simulation (CAE). A second link was used between CAE and CAD, and the third was

used between CAM and the board testing function. Although this system served mainly

design functions, the approach used to implement the links is analogous to the high-level

interface approach.

[Ref. 71] discusses the link between JIT and CIM and the impact that correct

scheduling rules have on the JIT philosophy. As a premise to this discussion, the concept

of high-level integration of CAD and CAM is introduced. A similar approach to the
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integration of CAD and CAM is taken in [Ref. 72], which proposes the use of software

translators to communicate among CAD and CAM databases.

This approach to integration should be viewed as a short-term solution. Even

though some increases in productivity and efficiency may be realized, it still has the

disadvantages associated with solving localized problems, the major problem being that it

doesn't integrate the functions in the context of the entire manufacturing process.

2. Integration by Centralized Database Support

An alternative to the previous approach is to integrate the four main CIM

components using a centralized database (see Figure 6). This alternative is generally the

approach taken by the process-oriented integration proponents because of the ease of

query processing and performance of database administration functions. This alternative

is normally unrealistic due to the heterogeneity of the functions to be supported [Ref. 16].

In addition, concurrency control is complicated due to the need for prioritization of

real-time access requirements. In a sense, this alternative provides too much integration.

Corporate planners, who normally are interested in the business data processing

component, e.g., summary information about shop floor productivity, have no interest in

data such as the maintenance status of a machine on the shop floor, even though the

information is readily available.

Figure 6. Centralized Database Support
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The Boeing Commercial Airplane Company proposed an approach which used

a geometry engine as the nucleus of the system [Ref. 73]. This geometry engine consists

of a user interface, a data modeler, a local data manager, and a communications processor.

Surrounding this nucleus are applications modules performing such functions as tool

design, production drawing, and numerical control programming. Each module is

independent of the nucleus, but uses the same data modeler, data manager, and

communications processor. The output of the CAD/CAM geometry engine will go into a

common data management system.

[Ref. 74] supports the idea that "The most essential part of any CIM system is

the common data base that includes both geometric and non-geometric product

information." The reason that the data base system is so important is because "the greatest

productivity gains and largest cost savings can be achieved only through the development

and use of a common geometric data base for design, analysis, drafting and production."

The centralized approach eliminates the lengthy process of re-creating basic design data

and avoids the errors due to transcription of this data from one system to another.

Another benefit to the centralized approach is that communication between

design, production, and their various functions and activities is improved as many of the

traditional barriers are broken down. Two fundamental aspects of the design and

manufacturing process benefit from this centralized approach. First, the entire

manufacturing process, from product design to service support is a monolithic, indivisible

function [Ref. 75]. The interrelationships of all the various components dictate that no

single portion can be considered on its own, but must be considered in the context of the

entire process. Second, the common ingredient in all manufacturing operations is the data

which is created, stored, analyzed, transmitted, and modified.

The Computer Assisted Document Management and Control (CADMAC)

system [Ref. 76] is one example of the communication of data using a centralized system.

This system stores both computer generated CIM files and raster images of paper

documents in digital form. Once these files are stored in the centralized database, they

can be cataloged, located, retrieved, edited, printed, and distributed electronically, which
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improves productivity and product quality. The true power of the CADMAC system is

that users can access required documents to answer queries for information about those

documents. This capability results in significant time savings by avoiding the manual

searching through files for this information.

The CODASYL database system [Ref. 30] has been used as a centralized

database management system supporting CIM in the metalworking industry [Ref. 77].

Because of the difficulty of navigating through a network database, a more "user friendly"

interface was developed to simplify the work of the applications programmers and the

engineers using the system.

There are many reasons why the centralized database approach is not an

acceptable alternative in providing integration for manufacturing functions [Ref. 16].

Such a centralized system would be responsible for monitoring real-time manufacturing

processes, maintenance of all aspects of the database including static data, e.g., initial

setpoints, alarm limits, engineering unit conversions, etc., and dynamic data, e.g., current

point values, current alarm state, etc., handling operator access to the system, and a whole

variety of other tasks. Few, if any, computers are currently available which could handle

all of these functions in a timely manner [Ref. 55]. Even if such a computer exists, the

use of a single centralized computer poses other problems. A major difficulty with the

use of a single system is the vulnerability to system failure. When all data flows through

a single host, the entire system ceases to operate when that host fails. Some portions of

the factory will still have enough autonomy to be able to continue operating in a

standalone mode, but from an overall control point of view, the system is inoperative.

This problem can be minimized by providing backup computers, but the benefits rarely

warrant the expenditure. Most companies would be tempted to adopt an optimistic

philosophy and disregard the need for backup.

Another problem with a centralized system, already mentioned above, is the

limited capacity that a single machine would have for handling the massive data

communications requirements to support an average sized factory operation. Similarly,

the storage and manipulation of this massive volume of data by a single database
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management system would be impossible. The volume of data required in the design

function alone would consume the capacity of most mainframe computers.

If a centralized approach were taken, the diversity of data to be supported

would result in a low degree of semantic expressiveness within the database management

system. The additional semantics required to properly model the manufacturing

environment would have to be provided by application programs which interface to the

database. In this case, which is analogous to traditional data processing, the database

management system is reduced to being a file server for those application programs.

Many people think that CIM means putting all of a corporation's data on a data
base management system (DBMS). This is neither a desirable nor achievable goal.
The great revolution in mini- and micro-computers was largely fueled by the poor
performance of large shared systems. Even logical centralization of data is a spurious
goal for all data of an enterprise. One should not expect that corporate planners would
be interested in stresses on a part or that an engineer would be interested in the
maintenance status of a machine on the shop floor. Rather, data should be organized so
that people or machines that share a set of functions have access to them. A centralized
data base ignores the heterogeneity of data management strategies and tools used in
manufacturing today. [Ref. 16]

3. Low-Level Integration

The third approach to integration uses a distributed approach to organize the

data, where each low-level function has its own database (see Figure 7). By standardizing

the data interface between functions and databases, a function can access the databases of

other functions since the data access protocol is the same between a function and any

database. This, of course, can be achieved by requiring the databases to support a

uniform data model and language. The question is, which data model and language is

powerful and flexible enough to support various different semantics, or abstraction

concepts, which are inherent in the various manufacturing activities? In other words, is

there a single data model that can capture the data requirements of design, process

planning, scheduling, group technology, etc.?

This standardization would force manufacturing system vendors to provide an

interface with each new product to be used in the manufacturing process. In addition,

standardization would allow application vendors to depend on the data in the system

36



Enggeering
EFiguren7 FLw eve ng

being in the proper fon pfo necesthi rdctfclttngdvlpet
insalltiomintnane, aniltofheurtocosamng competingprdts

EsTmaivo Func dogt

systm, ncldngteiefcec qing ngbo daaditiutdo e trylts
(Ref 78 pr p roo swsriute aproc o i u t oe ntiv am dfntv

arcitctue o upprtit.Threis noiniati s ofuow h aaasesshulgb

Controlanning

Shop low Sipping

i Figure 7. Low-level Integration

being in the proper form for interface to their products, facilitating development,

installation, maintenance, and flexibility of the user to choose among competing products.

I This approach also has the normal advantages of a distributed system, including the

~flexibility gained by distributing the data, and the normal disadvantages of a distributed

system, including the inefficiency of querying data distributed over several sites.
~[Ref. 78] proposes a distributed approach to CIM, but does not give a definitive

architecture to support it. There is no indication of how the databases should be

distributed or what functions they would support.
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This approach is also considered a long-term solution. Again, integration has

to be planned in advance to produce the best results. This approach is advantageous over

the centralized approach because it alleviates the problems associated with a single

centralized database.

D. SUMMARY

In this chapter we discussed the manufacturing industry's proposed solution to the

islands of automation problem, a concept called Computer Integrated Manufacturing

(CIM). The wide diversity of definitions of CIM leads us to believe that there is no

industry-wide consensus about the definition of the concept. We therefore, adopted a

definition which is consistent with our data-oriented approach. We have also examined

three alternative approaches to integrating manufacturing functions. Of the three, we feel

the low-level approach has the most potential for the long term. The cost of implementing

this low-level approach may make it unmealistic for small and medium-size companies

that cannot afford to ignore their current investment in computers and manufacturing

equipment. The best solution for these companies seems to be the high-level integration

approach we have described. We agree with other researchers that the centralized

approach is not viable and therefore we have not pursued it further.
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IV. DATA MODELING

A. BACKGROUND

It is apparent that an interpretation of the world is needed which is sufficiently
abstract to allow minor perturbations, yet is sufficiently powerful to give some
understanding concerning how data about the world are related. An intellectual tool
that provides such an interpretation will be loosely referred to as a data model. It is a
model about data by which a reasonable interpretation of the data can be obtained. A
data model is an abstraction device that allows us to see the forest (information content
of the data) as opposed to the trees (individual values of data). [Ref. 79]

To better understand data modeling, it is helpful to define what the objects are that

are being modeled. [Ref. 80] proposes the tuple

< object name, object property, property value, time >

as a working definition of an atomic piece of data. This tuple represents an object (object

name) and some aspect of that object (object property) which is captured by a value

(property value) at some point in time (time). The modeling of time is covered in

[Ref. 81] and is beyond the scope of this work. Several data models have been developed

which represent and relate an object name, object property, and property value. One way

of relating data is to categorize them according to their properties [Ref. 821. In a given

data model, the names of the categories together with their properties is called a schema.

The schema also includes relationship information for the categories and properties.

Figure 8 gives an example of a schema with three categories, employee, firm, and car.

The categories are depicted by ovals, properties by rectangles, and relationships by lines

between the categories they relate to.

A data model defines the rules according to which data are structured and the

operations which can be performed on the data being represented. A structure can be as

simple as a list of objects which can represent a stack or queue, depending on how the

operations are defined to operate on the list. The allowable structures for data within a

data model are static in nature, that is, they are relatively time-invariant, and are normally
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defined by a data definition language (DDL). The operations defined for the data model

are dynamic in nature since they cause a change in the various values that the data take

on. These operations normally comprise the data manipulation language for the data

model.

Figure 8. Database Schema

The combination of structure and allowable operations determines a unique data

model. Given the number of possible alternatives, many different data models could be

specified. Practicality and usefulness limit the number of data models which have

actually been used. Three of these, the hierarchical, network, and relational models, are

the most widely accepted and used. These three models will be discussed in more detail

and will be hereafter referred to collectively as the traditional models.

B. TRADITIONAL DATA MODELS

1. Hierarchical

Historically, hierarchical systems are the oldest of the database systems in use,

and the hierarchical data model is the oldest of the traditional data models [Ref. 83]. The

structure of a hierarchical data model appears to the user as trees of interconnected

segments (see Figure 9) where the relative order of the subtrees is important. The arcs

connecting nodes in the tree always point toward the leaves and away from the root. The

diagram in Figure 9 represents an intension [Ref. 79] of a hierarchical database. This
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Figure 9. Intension of a Hierarchical Database

intension describes the structure of the database in terms of its segment types and the

relationships between them.

In this figure, employee, work history, and education are segments. Each

segment is composed of one or more fields. The relationship between the employee

segment and the work history segment is a one-to-many relationship [Ref. 791, that is,

there may be more than one occurrence of work history data for a particular employee.

The same type of relationship exists between the employee segment and the education

segment. The one-to-many relationships are represented by the double arrows in the

intension diagram. Relationships in a hierarchical data model are also called parent-child

relationships [Ref. 83]. In the example above, employee is the parent of both work

history and education (the children). Work history and education are related as

siblings (Ref. 83].

Figure 10 shows a record which is an extension of the structure shown in

Figure 9. An extension of a segment is a group of data items relating to a specific entity.

While the simplicity of the hierarchical model seems attractive, it does have

some limitations. The model only permits representation of one-to-one and one-to-many

relationships directly. Many-to-many relationships require an artificial segment to be

inserted as shown in Figure 11. Here, parts has a many-to-many relationship with

supplier.
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Figure 11. Many-to-Many Relationships

The only type of relationship which can be modeled in the hierarchical model

are binary relationships between two segments. If two segments are related, only one

relationship can exist between them. One segment must serve as the root to maintain the

tree structure.

2. Network

The most prominent network data model was developed by the Data Base Task

Group (DBTG) of the Conference on Data Systems Languages (CODASYL) and is

known as the CODASYL network data model [Ref. 84]. In this model, entities are

represented by records which are groups of related fields. The relationships between

entities are represented by sets among the record types. Each set has a designated owner

42



record type and may contain one or more record types as members. Figure 12 depicts a

sample application modeled as a network.

AmmmM

I FE

Figure 12. Intension of a Network Database

This example contains three record types, customers, components, and CC.

Customers-CC and components-CC are the sets which relate customers and

components, respectively, to CC. Each occurrence of customers-CC consists of a single

occurrence of customers (the owner) and one occurrence of CC (the members) for each

order in which that customer appears. Likewise, each occurrence of components-CC

consists of a single occurrence of components (the owner) and one occurrence of CC (the

members) for each order in which that component oc.curs. Figure 13 provides sample

data values for this network.

Again, as with the hierarchical model, only binary relationships which are

one-to-one or one-to-many are directly represented in the network data model.

3. Relational

The relational data model is rapidly becoming the most popular of the

traditional models. It differs in several aspects from both the hierarchical and network

models. First, the relational model is based on a theoretical foundation from relational

mathematics. Second, the relational model is more abstract than the other traditional

models. The relational model represents data in a more natural way - closer to the way

the data exists. The hierarchical model requires data to be represented by hierarchical
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Figure 13. Extension of a Network Database

constructs, whether that type of construct is appropriate or not, and similarly, the network

model requires the use of the set concept. Instead of forcing an artificial construct on the

user, the relational model reduces relationships to simpler components and then represents

those components directly. The major reason for the increasing popularity of the

relational model is that it tends to simplify rather than complicate the user's view of the

data.

The relational model is built around the concept of a relation. A mathematical

relation is a set that expresses a correspondence between two or more sets, Si, S2, ..., Sn

[Ref. 79]. An n-ary relation T is defined as a subset of the Cartesian product of its

domains (T c S1 x S2 x ... x Sn).

The mathematical concept of a relation is used in database theory to define a

database relation. A relation scheme R is a finite set of attribute names (A1, A2, .... An).

Corresponding to each attribute name Ai is a set Di, 1 < i < n, called the domain of Ai.

Let D = DI u D2 u... u Dn. A relation r on relation scheme R is a finite set of

mappings (t, t2, ..., tp} from R to D with the restriction that for each mapping t E r, t (Ai)

must be in Di, 1 < i < n [Ref. 85].

A relation scheme appears to the iser as a two-dimensional table of data whose

entries are atomic values. In the standard relational model, no repeating groups or other
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complex structures are permitted as entries in the relation. In addition, all of the entries in

any one column are from the same domain. The columns of a relation are called

attrbutes and have unique names. The order of the attributes in the relation scheme is

immaterial. The rows of the relation, called tuples, can also appear in any order, and have

the additional restriction that no two rows in the relation are identical.

Figure 14 gives an example of a relation called STUDENT. Note that this

relation has four attributes, student number, name, academic major, and advisor, and

therefore the tuples in this relation are called four-tuples. The domain of the attribute

student number is the positive integers and the domains of the other attributes are

characters of length 15, 10, and 10 for name, academic major, and advisor, respectively.

STUDENT
studeit academic
number major

1101 Joe Jackson biology Smit

1120 Sue Anderson physics Newton

1123 Rusty Springs biology Jones

1205 1. Want Moore englsh Glover

Figure 14. Relation

The tuples in a relation are identified by the values of its attributes. One way to

identify a tuple is by listing the attribute values for every attribute in the relation. In the

example above, 1120, Sue Anderson, physics, Newton constitutes a unique identifier for

the second tuple since no two rows in the relation can have identical attribute values for

all attributes. It generally is possible to identify a tuple by specifying fewer attribute

values. In the STUDENT relation, the attribute student number alone will uniquely

identify a tuple since each student is assigned a unique student number. Each of the other

attributes alone may not be sufficient to uniquely identify a tuple. Two students could

have the same name and there will surely be a case wherm two or more students have the

same academic major. The same holds for the advisor attribute. Any combination of one
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or more attributes which uniquely identifies a tuple is referred to as a candidate key

[Ref. 30]. In the relational model, one of the candidate keys in each relation is selected to

be used as the tuple identifier and is called the primary key.

One major goal of the relational model is data independence. Data

independence is a measure of a database system's ability to provide for change in

representation or in content of the database without affecting programs [Ref. 83]. This is

achieved by representing data as relations and deferring the definition of relationships

among relations until execution time, when either relational algebra [Ref. 85] or

relational calculus [Ref. 85] can be used to express the relationships using the values of

common domains in the relations concerned. In theory, the data is represented logically

and the operations on the data are represented logically. This is not true of either the

hierarchical or network models. Furthermore, in the latter cases, the user can only process

data using the hierarchical or set relationships defined by the respective hierarchical or

network structure.

4. Limitations of the Traditional Models

The limitations of the traditional models are addressed in [Ref. 49] and [Ref.

83]. The limitations discussed here will focus on those most relevant to the

manufacturing environment. It has been generally stated that the traditional models are

not well-suited for manufacturing applications [Refs. 8, 29, 33, 36, 37, 38, 48, 50, 52, 54,

83, 86]. The two major objections cited are the lack of support for abstract data types

[Refs. 33, 36, 37, 38, 86] and limited semantic expressiveness [Refs. 8, 48, 83, 86]. Of

the two, the limited semantic expressiveness seems to be most serious drawback. Given

the record-oriented nature of the traditional models, the mapping of application semantics

into a low-level record-based structure tremendously limits their semantic modeling

capabilities [Ref. 49]. The simple data structures used by the traditional models to model

semantics often cause loss of information and therefore only support a limited portion of

the application environment semantics [Ref. 87]. The basic problem with the traditional

models is that they fail to distinguish the different kinds of relationships among the

objects in the application environment. The same data structure describes the attributes of
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an object, the type of that object, and the relationships between types, again, causing loss

of information.

The lack of support for abstract data types results in complex objects from an

application environment being represented by record structures, a correspondence which

is unnatural and difficult for users to cope with. Users should be able to address and

manipulate objects supported by a database system in the same way they are addressed

and manipulated in the application environment, which is the major purpose in using a

data model.

C. SEMANTIC DATA MODELS

1. Background

Semantic data models attempt to provide high-level data structuring features to

improve the expressiveness of database conceptual schemas. This is done by embedding

the semantics of a particular application in the database schema. The overall objective of

the semantic models is to increase database accessibility by end users, many of whom are

not trained in computer science.

In addition to providing for the representation of these semantics, the ideal

CIM data model would provide other features which are not found in the traditional

models. One of these features is the representation of design objects as primitives in the

model, with prescribed "rules" for associating objects with one another. These objects

could be the building blocks from which more complex objects could be built.

Operations defined for the data model would include those for manipulating objects.

These operations would include provisions for adding new objects and modifying existing

ones.

Semantic data models are normally represented by a set of abstraction concepts

which they employ to enhance their modeling capabilities. Many of these abstraction

concepts are rooted in the area of artificial intelligence (Al) known as knowledge

representation, in particular, semantic networks. The main difference between the work
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done in Al and semantic data modeling is that the Al researchers are more concerned with

representing abstract information rather than information structured in a manner oriented

toward database applications [Ref. 83].

2. Abstraction Concepts

a. Generalization/Specialization

Generalization refers to abstraction in which a set of similar objects is

regarded as a generic object [Ref. 88]. Generalization is used to classify objects into

types, which can be classified into other more general types. The generalization

abstraction concepts places the emphasis on the similarities of objects and abstracts away

their differences [Ref. 79]. Figure 15 is an example of a generalization hierarchy for a

subset of a data processing organization. The arrows in the figure indicate the direction of

generalization. For example, employee is a generalization of clerical.

Figure 15. Generalization Hierarchy

One of the benefits of using generalization is that inheritance can be used

between related types. In our example, all of the properties of employee can be inherited

downward to both clerical and technical, whose properties in turn are inherited

downward further in the hierarchy. If an employee is required by law to be over the age

of 18, then inheritance will stipulate that anyone who is either clerical or technical must
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be over 18 years of age as well. This downward inheritance will always produce valid

results [Ref. 89].

Specialization is the opposite of generalization [Ref. 79]. In Figure 15,

employee is a specialization of person (reverse the arrows in the generalization to obtain

the direction for specialization). One important distinction between generalization and

specialization is that specialization doesn't always allow for inheritance of properties in

the way that generalization does. For example, if all computer programmers are paid

less than $30,000 per year, it does not necessarily follow that all technical employees are

paid less than $30,000 per year, a systems analyst could be paid $40,000 per year.

b. Aggregation

Molecular aggregation is the abstraction of a set of objects and their

relationships into a higher-level object [Ref. 88]. This abstraction allows a view of

objects from different levels of generality, each with its own level of detailed definition.

A user interested in the overall design could use the topmost level of abstraction, which

would hide the implementation details. This implements the Information Hiding [Ref.

90] principle commonly found in programming language design. The idea is to give the

user only the amount of implementation detail he needs for a particular application.

Figure 16 depicts person as a molecular aggregation of name, address, age, date of

birth, and birthplace. All of these except address are primitive objects, i.e., they are not

further divided. Note that two levels of molecular aggregation abstraction are present in

Figure 16. Aggregation
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the figure. The objects whose name appears in upper case are molecular aggregations.

Those in lower case represent primitive objects in this example.

The properties of a type, such as name, address, age, etc., are referred to

as intensional properties [Ref. 911 (intensions) because they are definitional in nature. In

fact, aggregation is the normal means by which we describe or define items, we specify

the properties that the object takes on. The values that these properties can take on, such

as John Jones, 123 Anywhere Street, etc., are extensional properties [Ref. 911 (extensions)

since they are factual as opposed to definitional

Molecular objects have two description components, an interface, and an

implementation [Ref. 92]. The interface specifies the general function of the object and

the implementation provides the details of the use of the object for a particular

application. The aggregation concept will be discussed further in Chapter V.

c. Association

Association is a form of abstraction in which a relationship between

similar objects is considered as a higher level set object [Ref. 93]. The relationship is

regarded as a membership relation. The details of the member objects are suppressed and

the properties of the set are emphasized. Figure 17 gives an example of a country club

with an association of golfers The properties of golfers are specified to be name,

address, handicap, and annual dues.

Figure 17. Association
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d. Version Generalizaton

Version generalization is a form of abstraction in which similar objects are

related to a higher level object, generally a type [Ref. 921. A type is an abstraction of the

common properties of its versions. This abstraction features inheritance which is

analogous to that for the generalization abstraction concept. Versions can have two

distinct forms of attributes; those shared with the object type, and those defined to be

unique for each version. Attributes shared with the object type reproduce the interface

characteristics of the object type. Attributes defined to be version specific are the

attributes which distinguish one version of a particular type from another version of the

same type. Figure 18 provides an example of a set of object types and a related set of

object versions. Car and truck are types which are related according to the diagram to

convertible, station wagon, 4 wheel drive pickup, short bed and long bed. In this

example, car would be defined as having either a canvas top or a station wagon top.

There would not be any notion of a standard sedan in this case.

Figure 18. Version Generalization

Versiun generalization differs from the generalization concept defined

previously in that version generalization specifies the relationship between an object type

and its versions, while ordinary generalization is used to specify the relationship between

a type and its subtypes.
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e. Instantiation/ClassificatIon

An object is created by instandadon [Ref. 92]. Both object types and

object versions can be instantiated. Creating multiple instances of the same type/subtype

or version provides for a distinction between the various copies. A version may be

instantiated to provide a local working copy of a previous design, which can be specified

to any level of detail. Types (or subtypes) can be instantiated to produce a working copy

for design work from scratch, in cases where no existing design can be used. Figure 19

shows an object Fred's Car, which is an instance of type CAR. Fred's Car would be

produced to provide a working copy of type Car as a starting point in this particular

design. The fact that Fred's Car is instantiated from its parent type tells us that the

implementation specifications for the final product are not available and will be

developed from scratch. If Fred's Car were instantiated from Red Convertible instead,

the design would begin from the point in Red Convertible where implementation details

left off, indicating that some similarity exists between the implementation of Fred's Car

and Red Convertible.

make
model typeCAR

Worf

... ..... ..... . ...................

mak I instance
___ C R- . Fred's Car

Of_ 11 of
S.. .... .;......................... CA

Colo redtype
S- - CAR

owner imoer Fred

Figure 19. Instantiation
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Classification, the opposite of instantiation, defines an object type as a set

of instances [Ref. 79]. Each instance shares common characteristics with the other

members of the same class. For example, in Figure 20, the instances Joe's Truck and

Sam's Truck define the type TRUCK through classification.

Figure 20. Classification

f. Version Hierarchy

A hierarchy is formed for the set of versions for a particular type/subtype,

and is called a version hierarchy [Ref. 94]. In this hierarchy, going from a higher level to

the next lower level, we find that more implementation details are specified. The

difference between the type/subtype generalization and the version hierarchy is that

different versions of an object have the same set of attributes, and not necessarily the

same values, while different types (or subtypes) will have different sets of attributes from

each other. Figure 21 depicts three version hierarchies. In this case, RANCH is a

subtype of type HOUSE, and two bedrooms, three bedrooms, and four bedrooms are

subtypes of ranch. Each subtype can have its own version hierarchy. The blocks labelled

10x12 Master, 12x15 Master, and 14x18 Master are on the same level in the diagram

because they represent mutually exclusive versions. Each block in the diagram is a

potential starting point for future designs.
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Figure 21. Version Hierarchy
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g. Instance Hierarchy

The instantiation abstraction is extended to form an instance hierarchy,

consisting of different instance alternatives for the same type/subtype or version [Ref. 94].

Figure 22 is an example of an instance hierarchy for a house being designed for John

Jones. Since Mr Jones is building this house from scratch, the design starting point was

an instantiation from subtype ranch. In the course of designing his house, Mr Jones

wasn't sure whether he wanted his living room dimensions to be 15x21 or 17x19, two

alternatives represented in the hierarchy. The reason for saving the hierarchy is that Mr

Jones may decide on one size, finish the design, and then change his mind. The hierarchy

would permit him to go back to the point of the decision and re-complete the design,

which may require modification to other room dimensions. All of the information

provided in the original design would be saved in the event he changed his mind again.

3. Survey of Current Semantic Models

Current semantic models include the Entity-Relationship (ER) Model,

Functional Model, SHM+, SDM/Event Model, TAXIS, SAM*, and RM/T. All of these

models use primitives such as entities, events, or simply objects. They also include

provisions for composite objects and attribute specification among the supported features.

Extended semantic models integrate a number of programming language concepts with

database concepts. They also make use of advanced data type concepts such as abstract

data types and strong typing. These extended models include SHM+, TAXIS, and the

SDM/Event Model. Semantic modeling theory is now being applied to particular

application areas such as office automation, VLSI, and cartography, as well as for

traditional data processing applications (inventory, insurance). We will make use of

many of the concepts from current semantic models in the description of our model.

a. Entity-Relationship Model

The Entry-Relationship (E-R) model [Ref. 95] uses a network

representation to model objects (the entities) as nodes and relationships as edges between

the appropriate nodes. This model identifies four levels of views of data which are used
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to support logical and physical database design. The first level, the semantic level, deals

with information concerning the conceptual objects and relationships of interest. The

second level organizes the information modeled in the first level into relations. The third

level is concerned with the access-path-independent storage structures; those not involved

with search or indexing schemes, which are placed at level four.

The E-R model supports many-to-many relationships using the notion of a

relationship set, which is a mathematical relation among two or more entities. Both

entities and relationships have associated attributes which define their properties. The

main use of the E-R model has been in high-level database design [Ref. 79].

b. Functional Model

In the functional database model [Ref. 83], the attributes of an object are

viewed as mappings from that object to some other domain of objects. One unique

characteristic of this model is its integrated view of data definition and data manipulation.

The traditional models separated these two activities into static and dynamic parts. Data

definition, the static part, is done as part of the database design process. Once that

definition is made to the DBMS, data can be entered, manipulated, and output using a

data manipulation language. This is a dynamic activity; it depends on the state of the

database, and changes the database from one state to another.

There are three predominant functional database models in existence. The

DAPLEX [Ref. 96] model uses functions to define types and relationships among objects.

Types are modeled as functions without arguments and relationships are modeled as

functions with one or more arguments. Functions are manipulated using predicates and

can be composed (as in mathematics) to form complex objects.

The Functional Query Language (FQL) [Ref. 97] models an application

using a set of abstract data types and a set of functions defined on those types. In this

model, which is mainly a query language, data manipulation using functions is done

similarly to the way the DAPLEX model does it.
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The functional data model (FDM) [Ref. 98] uses a graphical schema with

nodes, which represent types, and mappings between the nodes. The functions can be

many-to-one, one-to-one, or identity functions; can be either partial or total functions,

onto or into, and may use ordinal types as domains. Data manipulation is done by

retrieval and manipulation primitives which treat functions as logical access paths, and

perform ordinary insert/update and delete operations.

c. Extended Semantic Hierarchy Model

The extended semantic hierarchy model (SHM+) [Ref. 99] extends the

traditional relational model by providing more domains and data types for modeling

complex relationships, makes a clearer distinction between the schema and database

levels, and provides a constraint facility. SHM+ also employs the generalization and

aggregation abstraction concepts to define type hierarchies and provide an inheritance

mechanism. The subtypes in the hierarchies partition the instances of the parent type and

may themselves be subtypes. With inheritance, some of the attributes of a subtype can be

inherited downward from the parent type, while other attributes are defined specifically

for a particular subtype.

d. Semantic Database Model

The semantic database model (SDM) [Ref. 100] uses the aggregation and

instantiation abstraction concepts and distinguishes between entities, which are nonatomic

abstract objects, and names, the identifiers for atomic objects. This model supports types,

which are disjoint classes of objects, and subtypes, which may overlap. SDM also

employs a grouping type, which is formed by treating instances of a type as subtypes.

Grouping types allow relationships between sets of subtypes having a common parent

type to be created and named. Relationships are also permitted to have attributes

associated with them. Attributes in SDM can be defined as single- valued or

multi-valued.
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e. Taxis

The Taxis [Ref. 91] data model was developed to support the information

system design process. Taxis uses an object-oriented framework, where each object in

the model represents a real-world (application) entity or concept, and employs the

aggregation, classification, and generalization abstraction concepts. Transactions, which

are groups of primitive operations, are used in Taxis to model complex activities in the

application environment. These transactions can be organized into subclass hierarchies to

form higher level procedures.

A compiler was written for Taxis which takes advantage of traditional data

management facilities. This implementation decision was intended to decrease the effort

required to produce the compiler [Ref. 101]. The compiler translates Taxis programs into

Pascal/R, which interfaces to a relational database management system.

f. SAM*

SAM* [Ref. 86], which is a refinement and extension of the semantic

association model (SAM) [Ref. 102], includes support for temporal, positional, and

procedural relationships, hierarchies of data structures, recursive definition of objects,

modeling of multiple versions of an object, and complex data types. This data model

distinguishes between atomic and nonatomic concepts. An atomic concept is one which

cannot be decomposed, and is assumed to have a well-understood meaning which does

not have to be defined in terms of other concepts. Nonatomic concepts are defined in

terms of other atomic and nonatomic concepts.

When atomic or nonatomic concepts are grouped to describe a

higher-level non-atomic concept, an association is formed. The types of association

supported by SAM* can be distinguished according to their structural properties,

operating characteristics, and any constraints that users may place on them. Among the

associations supported are the membership, aggregation, and generalization associations,

which are analogous to the abstraction concepts of classification, aggregation, and

generalization, respectively.
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g. Extended Relational Model

The extended relational model RMIT [Ref. 103] extends the traditional

relational model by supporting null values, the aggregation and generalization abstraction

4concepts, and a richer variety of objects. Types are represented by relations with an

internal identifier for each instance of a type. Attributes are also represented by relations

with property values for the internal identifiers.

h. Object-Oriented Approach

One of the major distinguishing features of an object-oriented system

from traditional systems is its ability to handle objects of arbitrary type. Traditional data

management systems are limited to objects of type record (they are record-oriented).

Object-oriented systems define types to be similar to abstract data types; i.e., the

properties and operations for a given type are encapsulated. The classification abstraction

concept forms the basis for object-oriented systems, that is, objects are placed into classes

based on their properties, and classes are organized into hierarchies which support

inheritance.

Most of the object-oriented systems are based on the Smalltalk [Ref. 104]

programming language. Smalltalk models both entities and relationships as objects. In

addition, classes and properties are treated as objects. When a class is defined, the

variables (properties) and messages (operations) for that class are specified. Once we

know what class a particular object belongs to, we can access the information about the

properties and valid operations for that class. Operations are performed by passing

messages to objects, which results in a response dictated by that object's properties.

D. SUMMARY

In this chapter we briefly reviewed the traditional data models and discussed their

limitations. Their most significant limitation is the lack of semantic expressiveness which

is necessary to capture the semantics of advanced application areas such as
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manufacturing. We discussed semantic data models and the abstraction concepts which

differentiate them from the traditional models.

6
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V. DATA-ORIENTED MODEL FOR INTEGRATING

MANUFACTURING FUNCTIONS

A. MOTIVATION

As we stated previously, our approach to integrating manufacturing processes from

a data-oriented perspective considers CIM as the composition of a design phase, a

production planning phase, a production monitoring phase, and considers the traditional

business functions as peripheral to these three phases. Manufacturing processes are

associated with one of these phases based on their type of data usage. The way in which

the basic processes are grouped into these phases does not affect our proposed integration

strategies.

The major advantage of our data-oriented approach over process-oriented

approaches is that the integration of product design and manufacturing functions is

considered in the context of the manufacturing system as a whole. The database support

for the manufacturing environment includes the production of appropriate data as a

byproduct of primitive functions such as product design. As soon as a product is

designed, the alternative process plans for that product are immediately known.

Process-oriented approaches regard integration as the automation of interfaces between

existing functions, view these functions in a local context, and do not allow for the

possibility that a more natural integration might occur if the product life cycle was

redefined.

We will introduce our data model by describing the abstraction concepts it supports.

We will first define our model informally using illustrative examples and then define it

formally in section C. It will be clear from our description that no other existing data

model provides natural abstraction support to the CIM environment.
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B. DATA MODEL DESCRIPTION

Our model includes the molecular aggregation, generalization, version hierarchy,

instantiation, and instance hierarchy abstraction concepts. We believe these are necessary

to support the manufacturing process, and therefore are useful for other advanced

application areas as well. As we describe our modeling abstractions, we will discuss

existing concepts from which they were derived, where appropriate.

Some of the modeling abstractions supported in our data model are portrayed by a

conceptual schema which the user will manipulate (see Figure 23). The conceptual

schema will show the allowable type/subtype aggregations, component relationships, and

the acceptable combinations of primitives which can produce higher-level objects. It is in

this conceptual schema that the primitives for an application environment are defined.

exterior root om po
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Figure 23. Example Conceptual Schema

63



Primitives can be defined to any level of abstraction, and can be composite objects

themselves. These primitives are the building blocks which the data model manipulates

in support of a specific product design, process plan, or other application. A separate

schema is produced for each different application to be modeled and manipulated.

Each type and subtype in the conceptual schema will have a prototype associated

with it. The prototypes will contain slots for attribute values, allow default values to be

specified, and provide inheritance information. When instances are created, extensions of

these prototypes are created, allowing for attribute values to be defined which are unique

for that instance.

Figure 23 provides an example of a conceptual schema. This schema represents the

hierarchy of type aggregations for a generic house. An instance of this schema would

contain data for a specific house being designed.

A house could be the aggregation of a floor plan, an exterior, a roof, and interior

rooms and spaces. Each of exterior, roof, room, and space are further defined as

aggregations of objects, some of which are shared. For example, both roof and exterior

can have a component called opening.

The bold rectangle notation represents types which have named subtypes. For

example, room has subtypes named kitchen, den, bathroom, bedroom, etc., which can be

instantiated to produce a specific configuration.

Ir summary, the conceptual schema provides the medium through which the data

model captures the data for a particular application, e.g., product design. Together, the

data model and conceptual schema determine the full range of alternatives available in an

application.

1. Molecular Aggregation

We will use the aggregation abstraction concept described earlier to support

several aspects of the manufacturing environment. For example, in product design,

aggregation will be used to model assemblies which are composed of subassemblies and

component parts. In production planning, aggregation will be used to form process plans
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from individual machine operations and other process plans. In production monitoring,

shop floor layouts will be determined by aggregating machine cells of various types.

In general, aggregation will be used to combine intensions and extensions of

objects of possibly different types into a higher level object, which will also be an

intension or extension, respectively, of a type. Figure 24 shows some sample

aggregations using our model.

(a) aregalon of Inalon

heat vent

(b) aggregaton of eoname

Figure 24. Sample Aggregations

2. Generalization

The generalization concept will be used in our model to provide the

relationship between types and their subtypes. Types will be defined as generalizations of
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a set of named subtypes, and will be treated as primitives from which versions and

instances can be made directly. An example of generalization would be the creation of a

type wood-working machine from the subtypes drill press, jointer, table saw, and

lathe. The notion of subtype is important to our model because different subtypes (of the

same type) will be permitted to have different sets of attributes.

One important aspect of the use of generalization in our data model concerns

the inheritance of attributes between related types/subtypes. In Figure 25, wood-working

machine has been created with attributes owner and power source. Each of the subtypes

drill press, jointer, table saw, and lathe also have these same attributes, plus other

attributes which can be defined uniquely for each subtype. When the subtypes drill

press, jointer, table saw, and lathe are created, their subtype-unique attributes are

defined and then the attributes from their generalized type are inherited (in this case

owner and power source are inherited from type wood-working machine).

owner

drll press Jointer table saw lathe

O'fr owne1r owner owner

power sure power source power source power source
manufacturr manfct manufacturer manufacturermoll model model M odel

chuck type nax ct width blad type uing tpe
bit type max cut depth blade size chip .,l
bit size chis'el size

Figure 25. Generalization

3. Version Hierarchy

A version of a type (or subtype) will be defined to be a molecular object with

two components, an interface and an implementation. The interface for a version is
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specified by listing the properties or attributes which describe it. The implementation for

a version is specified by providing values for the interface attributes. In our model, a

version will have its interface details completely specified, but its implementation details

will be in some stage of completion. This definition allows a version to be plugged,

partially plugged, or unplugged [Ref. 92]. Figure 26 shows an object of type CAR with

an object version 1988 X-Car of type CAR. The object of type CAR has its interface

defined, which is denoted by the topmost block in the figure with the atributes year,

make, model, color, and owner listed. The implementation details for this object are not

specified, denoted by the unspecified values for those attributes. Object 1988 X-Car has

the same interface details as its object type, and also has some implementation details

specified, denoted by the value "1988" for the year attribute and the value "X-Car" for the

make attribute. In this example, the interface (function) of the object is specified, but the

implementation details (e.g., what color is the car?) are not completely specified.

yp CAR

m-del IN K..
CAR

Figure 26. Version of a Type

Versions can have two distinct forms of attributes; those inherited from the

object type, and those with unique values for each version. Attributes inherited from the

object type reproduce the interface characteristics of the object type. Attributes defined to

be version specific are the attributes whose values distinguish one version of a particular
type from another version of the same type.
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The difference between a version and an instance of a rype/subtype is that a

version is created at an intermediate point in the modeling of an application, permitting

future work to begin at that point, with implementation details partially specified. A

type/subtype is considered a starting point in the modeling of an application, with no

implementation details specified.

In specifying the various possible values that attributes can take on, the version

hierarchy is formed. The purpose of this hierarchy is to expand the set of possible starting

points for future work. This notion of a hierarchy of intermediate modeling points is one

distinction between our model and those previously discussed. This concept is extremely

valuable because it minimizes the amount of redundant work in all aspects of the

manufacturing process. Traditionally, such redundancy occurs in product design, where

products are repeatedly designed using the same primitive elements; in process planning,

where machine operations are constantly refined, creating new process plan alternatives;

in shop floor layout, where improvements in efficiency are sought by shuffling resources;

and in scheduling, where priorities and resource availability are constantly changing.

Our ability to model versions in this hierarchical manner comes directly from

our definition of version. [Ref. 92] defines versions to be objects that have the same

interface, but different implementations. Our definition is more general in that the

implementation can be specified to any level of detail desired; plugged, or fully specified;

partially plugged, or partially specified; or unplugged, in which case no implementation

details are specified. The flexibility we gain in generalizing the definition allows us to

better model, and more efficiently support, the manufacturing environment.

Our version hierarchy is also different from that described in [Ref. 921, where a

hierarchy forms from the aggregation of versions to create higher level versions. Figure

27(a) shows an example of this concept. Our version hierarchy, on the other hand, forms

from the specialization of versions to form lower level versions. Figure 27(b) depicts our

version hierarchy concept.

Our hierarchy consists of versions which are all of the same type. The versions

are related to each other in the manner represented by the hierarchy. All of the versions
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are related to their type by version generalization; the topmost version in the hierarchy is

directly related and the others are indirectly related. Again, the flexibility provided by our

model in representing and relating versions in this way increases the semantic modeling

power of the model and brings it closer to the application environment. We know of no

other model which supports this construct.
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Figure 27. Comparison of Version Hierarchies

4. Instantiation

We use the instantiation abstraction concept in our model for several purposes.

The dotted and dashed lines in Figure 28 represent instantiations which create versions

and instances of objects, respectively. Both types and versions can be instantiated, and

the result can be either a new version or an instance of an object.
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Instantiation includes an inheritance mechanism which is more direct than the

inheritance associated with the generalization abstraction concept. The instantiation

inheritance copies all of the attributes and attribute values of the instantiated object. No

new attributes can be defined for the instances created, but attribute values may be further

specified. Thus, in Figure 28, the attributes of version VI, instance I1, etc., are the same

as the attributes for type A itself. The only difference between any of these instantiated

objects, either versions or instances, are differences in attribute values. Two instances of

the same type or version, such as II and 12, will always be distinguished by the values of

attributes, in particular, attribute values which are not inherited during the instantiation

process. Therefore, the major distinction between an instance and a version is the same as

the distinction between extensions and intensions. In the manufacturing environment,

instances are meant to represent real-world products, process plans, schedules, etc., while

versions serve as templates which define those real-world objects to some level of detail.

V21Vkac

Figure 28. Types of Instantions

5. Instance Hierarchy

We created the instance hierarchy to supplement the other abstraction concepts

in our data model, providing a mechanism which allows a user to maintain all of the

different instance alternatives for a particular function. For example, a design engineer

could keep all of the variations for a product being designed. Similarly, alternative

process plans could be kept this way until a final plan was decided on.
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Figure 29 depicts the sequence of events that might occur as a design engineer

interacts with our data model.

[E - type/subtype hierarchy
examined for most

S2 Eappropriate object.

V- type/subtype is expanded
to show available versions

-I .V2 - appropriate version is selected

- instance of the version
is created

- as work proceeds, more
alternatives are added to
instance hierarchy

12 - when work is completed,
final choice is selected

V
- instance hierarchy isV-2 collapsed, decision is

made whether to add
final choice to version

De l hierarchy

Figure 29. Operation of Data Model

Note that the instance hierarchy, like the instance itself, is a temporary entity

within the system. When a designer decides which alternative in the hierarchy will

become the final choice for a given product, the hierarchy collapses, leaving only the

selected alternative. The design is archived with the version from which it was created.

The designer then has the option of creating a new version from the new design, which
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will be added to the version hierarchy (in the appropriate place) to become a starting point

for future work. If the new design is added to the version hierarchy, another decision has

to be made regarding which attribute values will be included when the version is created.

C. FORMAL DEFINITION OF THE DATA MODEL

We will use standard mathematical notation to define our data model. We will start

by defining the notions of type and object. We will then define each of the abstraction

concepts used in our model in terms of these notions.

We define a type to be the characterization of a set of values and the set of

operations that are applicable to those values. We further define a type to include

system-defined and user-defined types. System-defined types are the primitive types

integer, real, character, string, etc., found in most database systems. User-defined types

are formed by aggregation of previously defined types, each of which may be either

system-defined or user-defined. We will denote a type in this discussion by the use of

capitalized letters.

The aggregation operation, used to create a type P from types Ti, T2, ..., Tn is

defined as follows:

n
P=Agg(T,T2,...,Tn)4-*P= X Ti

i=J

where X denotes the Cartesian product operation, TI X T2 X ... X Tn. Therefore, a

user-defined type is the Cartesian product of the sets of values which are the aggregates

for that type. The aggregates for a type P, denoted by Agg(P), are defined as follows:

n
Agg(P)={Ti I P= X Ti}

i=1

We define an object to be a member of a type, or in other words, a value in the

domain of a type. We will denote objects by use of bold-faced lower case letters. Using
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our notation, an object o e T € o is of type T. The aggregates for an object o are defined

as follows:

n
Agg(o)={ai I oeTAaieTi AT=X Ti),

i=J

that is, the aggregates of an object of type T are the objects of type Ti, where Ti is an

aggregate of type T.

The generalization of subtypes Sh S2, ..., Sn, denoted by Gen(SI, S2, ..., SO, to

specify type T is defined as:

Gen(S ,S2, ..., Sn) = T -c*

(A e Agg(T) =* (A e Agg(S1) A A e Agg(S2) A ... A A e Agg( Sn))).

The specialization relationship between a type T and its subtypes is defined as:

Spec(T) = {S ) 4-* (A F Agg(T) =* A e Agg(S))

and a subtype S of type T is defined as

S St T = S E Spec(T).

An instance of a type is defined as follows:

x In Y =* (Ae Agg(Y) =* (3 a E Agg(x) 3 (a e Ava =

In our notation, x In Y reads "x is an instance of Y" and 0 denotes a null, or unspecified

value..

A version v of type T, denoted by v Ver T, is defined as:

v Ver T =>

(AE Agg(T) = (3a E Agg(v) 3(a r A va =

A (y e Agg(v) 3 y = ).

An instance of a version is defined as follows:

x In y = (ae Agg(y) = a e Agg(x)).

Our version hierarchy requires two definitions. The first relates a version to the type

from which it was created. The second relates a version in the hierarchy to the version

from which it was created.
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(2) vi Vh V2 =* ((y e Agg(v2) =* y e Agg(vl)) A (Agg(vi) * Agg(v2))).

Our definition of instance hierarchy is as follows:

ii lh i2 =;>(y E Agg(i2) := y r Agg(il)) A (Agg(ii) * Agg(i2)).

D. ROLE OF THE DATA MODEL

The purpose of a data model is to define the rules according to which data are

structured [Ref. 79]. The major way of structuring data is through the use of abstraction.

Using abstraction, the general properties of objects are emphasized while their details are

suppressed. The use of data modeling techniques in advanced application areas such as

Computer Integrated Manufacturing serves an additional purpose. The data model, if

properly developed, takes on an important role in the attempt to automate and integrate

otherwise autonomous functions. The data model itself serves as a standard which

facilitates integration.

In the design process, the data model could provide a standard which different

product designs can use to ensure compatibility in the later stages of production. In

particular, this standard will facilitate the integration of design data into the process

planning and scheduling functions. The role of the data model in process planning will be

to provide a standard which different product process plans can use to ensure

compatibility with and facilitate integration into the scheduling function. If the same data

model is used to support design, process planning, and scheduling, then the compatibility

between design and process planning functions could be extended to the scheduling

function, providing a natural form of integration of the major components of the

manufacturing process.

E. SUMMARY

In this chapter we presented the data-oriented manufacturing model. The model was

described as the composition of several data abstraction concepts presented in Chapter IV.
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We provided a formal description of the data-oriented manufacturing model and

described the role that the data model plays in enforcing standards in a system.
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VI. HIGH-LEVEL INTERFACE APPROACH TO INTEGRATING

MANUFACTURING FUNCTIONS

A. MOTIVATION

The goal of integrating manufacturing functions is not easy to achieve. A major

problem to be overcome is the decision on which strategy is to be used. The investment

in existing resources cannot be overlooked in planning an implementation strategy. As

we stated previously, one way to consider the existing resources in moving toward the

implementation of Computer Integrated Manufacturing is to use the high-level interface

approach described in Chapter III. Since this approach still only solves the problem

locally, and does not view manufacturing functions in the context of the entire system, it

is considered a short-term solution. Since the cost of implementing a fully integrated

system will be too much for many manufacturers to bear, this high-level integration may

be their best approach.

We will demonstrate this integration concept by describing a high-level interface

between Computer Aided Design and Computer Aided Manufacturing, using the partition

of functions from Figure 3. Using our data-oriented approach to integration, we will

focus on the data requirements for integrating CAD and CAM.

B. DATA REQUIREMENTS FOR INTEGRATING CAD AND CAM

Figure 30 depicts the data interactions in CAD and CAM. CAD uses the conceptual

schema (as discussed in Chapter V) and the data model to produce the appropriate design

data for the product to be manufactured. The design data is used in the industrial

engineering function to produce bill-of-material and manufacturing operations

information, which is used in CAM to determine how and when the product will be

produced. Since our main objective is to provide an interface between CAD and CAM,

we will propose to use the design data produced by CAD to automatically produce the
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bill-of-material and machine operation information required in CAM to develop a

production schedule.

coneptual schema

II
Industrial

Engineering

bill-o -matrialsmanufactuing operations

(-chding at

Figure 30. CAD/CAM Data Interaction

1. Representing Design Data

The CAD process, guided by the data model, records actual instantiations of

the primitive types represented in the conceptual schema to form the design schema for

the product being designed. The design schema for a product uses the inheritance

mechanisms from the data model to infer some attribute value information about the
properties of primitive types/subtypes from known information about related

types/subtypes. Our design schema uses both part-of and contains, which are

aggregation relationships, to pass information up and down the hierarchical structure.
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a. Use of Prototypes and Inheritance

Each type/subtype in the conceptual schema has a corresponding

intensional prototype associated with it. A prototype is a block of memory allocated to

store data using the aggregation abstraction concept. As the conceptual schema is

manipulated to create the design schema, intensional prototypes are instantiated to capture

the design data associated with the use of an object of a given type/subtype in the design.

Figure 31 is an example of a prototype (intensional) for type cover. Each instantiated

prototype has named slots which can be filled with either relationship or property data.

The slots part of and contains are used in the prototypes to represent relationship data.

In Figure 31, part of relates the cover to a particular face (using the conceptual schema

shown in Figure 23). Contains is used to identify prototypes at the next lower level in

the conceptual schema, and stores data in the form of a list, so that a variable number of

relationships can be represented. The slot material type is used to hold property data, in

particular, the kind of material that the cover is made of. Note, as shown in Figure 31,

that some slots are marked with an *, signifying that inheritance can be used to provide a

value, while other slots may be marked with **, denoting an attribute whose value is

optional. The slots which are optional are those that could have a nonsensical value under

some circumstances. For example, the depth of a cover of paint would not normally be

specified, while the depth of a cover of panelling would be.

"h

Figure 31. Sample Prototype
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Careful thought must be given to the use of optional slots when designing

prototypes. The design and efficiency of the CAD/CAM interface may be affected by the

improper use of optional slots since the interface has to determine for each use of the

prototype whether or not the optional slots should be filled. The greater the number of

optional slots, the greater the complexity of the interface becomes. Another aspect of

prototype design which must be considered concerns the format of the slots. The format

should be kept as simple as possible to minimize the effect on the interface design. Value

information for each slot should either consist of two parts, a measurement value and the

units of measurement, or a single part, the property value. The description of the slot,

e.g., height in Figure 31, may be specified in any way, but should have standardized

usage throughout the prototypes for a particular application.

b. Coordinate Systems

In order to specify location data in a prototype, it is imperative that the

frame of reference be known by any process using that data. For most circumstances,

three frames of reference should suffice, global or world, product, and local coordinate

systems. Figure 32 depicts the relationships among these coordinate systems.

Product Local

Z Coordinates Coordinates

axis Y Z ' Y
Z axi axis

ax axs
World a X

Coordlnates . axi

The
Producte

axis

(0,0,0) x
axis

Figure 32. Coordinate Systems

79



Global coordinates relate an object location in the real world (on planet

Earth). The X and Y axes could represent the latitude and longitude, respectively, and the

Z axis could be perpendicular to the ground, to represent the elevation of an object with

respect to sea level. The product coordinate system expresses information relative to the

object itself, and is useful when locating components of the object, regardless of the

location of the object in global coordinates. The local coordinate system extends the

product coordinate system so that subassemblies of an object in product coordinates can

have their own coordinate system to relate components of the subassembly to the

subassembly itself.

The uses of product and local coordinate systems not only eliminates the

need for global coordinate information under most circumstances, but also provides

automatic update of location information during design changes. For example, if a wall,

containing a window, is moved, and the window location is specified in a local coordinate

system relative to the wall, then the window coordinates need not be modified to reflect

the change in position of the window with respect to the overall product, or the real

world.

One other valuable piece of information is used to specify the orientation

of an object. The normal is defined to be a unit vector perpendicular to the surface of an

object. If many flat parts are being used in a product, then the normal can be used to

gather additional information about how the parts are related in the overall product. For

example, a wall can be distinguished from a ceiling or floor, which can also be

distinguished from each other, using normals. Figure 33 shows an example of a normal.

iu ltoSuftao.A

SSr A

Figure 33. Example of a Normal
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By definition, each flat surface will have a unique normal with three

components, one for each of the three dimensions in the coordinate system. A component

value of 1 indicates that the normal is parallel to the axis in question, with an orientation

in the positive direction of the axis. A value of -I indicates that the orientation is in the

negative direction of the axis, still parallel to the axis. The value of each component is

equal to the cosine of the angle between the normal and its axis [Ref. 105], and therefore,

will always be between -1 and 1.

c. Storage and Manipulation of Design Data

The use of prototypes to capture design data has a major advantage in

addition to those already mentioned which affect the CAD/CAM translation process. The

representation of design data in prototypes, as a tabular array of data, permits storage and

manipulation (insertion, modification, deletion, etc.) of the attribute values using a

non-first normal form relational model [Ref. 106] at the physical level. The non-normal

form relational model is required because the values of the contains attributes are

contained in a list, which is not atomic, and therefore violates the requirements of the

normal relational model.

Using the non-normal form relational model, a database scheme is

developed containing one relation for each type/subtype in the conceptual schema. As

prototypes are instantiated during the design process, the slot value information provided

by the user is stored in the appropriate relation as a tuple. Since each instantiated

prototype contains a unique name, specified by the name slot, that name can serve as the

identifying key (primary key) for its associated relation.

2. Data Used in CAM

The industrial engineering activity, shown in Figure 30, converts the design

drawings and other design information into working papers for manufacture. These

working papers define what has to be produced and how it should be manufactured.

When the industrial engineering activity is completed, the sequence of manufacturing
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operations necessary to produce the product and the raw material requirements for those

operations, in the form of a bill of materials, will be known.

a. Manufacturing Operations

To plan the sequence of manufacturing operations necessary for

production of a product, the product is decomposed into a series of operations which are

related to each other both temporally and spatially. These temporal and spatial

relationships determine the sequence of the operations. In the decomposition process, the

most suitable machining technologies are considered at each step. Decisions are made

regarding the forming, shaping, cutting, etc., of raw materials, and the appropriate

machinery, tools, and fixtures are selected which perform the desired operation. The

information on the sequence of manufacturing operations will drive the CAM functions,

in particular, the scheduling of resources to perform those operations for a product within

a desirable time frame.

b. Bill of materials

The raw material requirements planning aspect of industrial engineering

determines the quantity of materials required for a product, using information about the

external and internal composition of that product. The cost of each component can be

used to calculate the materials cost for the product. The bill of materials produced will

show these costs and the relationships of components within subassemblies and

subassemblies within the overall product.

C. EXPERT SYSTEM TRANSLATOR

Our approach to a high-level interface of CAD and CAM is to develop an expert

system translator. The basic task of this translator is to automatically conclude the

quantities, types, and assembly sequences of raw materials needed to manufacture a

product from design data. In addition, the translator will provide for resolution in the

event that it receives conflicting data. An example would be the preference of standards

data over design data, in situations where standards would otherwise not be met. The
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translator will be opportunistic, that is, it will use substitution criteria whenever possible

to lower cost without sacrificing quality. The translator will use the schema and assembly

data as input to the backward-chaining control mechanism. In addition, the translator
performs various standards checks on the CAD data to ensure its correctness. Correctness

is used here to imply that the data meets all known requirements. These requirements

may be based on laws of physics, laws of government, or anything else deemed

appropriate.

conceptuW Schema

L

Schema Design
Data Data

Rue Expert System Translator

l Assembly Data

Process Planning and
Material Requirements Planning

Data

Figure 34. CAD/CAM Translation
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Figure 34 depicts the data involved in the CAD/CAM translation process. Since our

main objective is to automate the industrial engineering process which produces process

planning and material requirements planning data, we will not concern ourselves with

data requirements beyond the scheduling process. The design phase is represented by the

box labelled CAD which takes the conceptual schema as input and outputs schema and

design data using the data model as a guiding mechanism. The expert system

translator uses the schema and design data as input and produces process planning data

which is used in the manufacturing phase, eventually being converted to scheduling data.

We will briefly describe expert systems and then discuss each of the data pools shown in

Figure 34 individually and tie them together by describing the interactions which occur.

1. Expert Systems

The term expert system has been used in our discussion of the CAD to CAM

translator. True expert systems are written using artificial intelligence languages such as

Prolog and belong to the class of artificial intelligence applications known as

knowledge-based systems [Ref. 107]. Figure 35 shows the structure of an expert system.

DESIGN DATA1!
KNOWLEDGE RULES

INFERENCE ENGINE

ACTION

Figure 35. Expert System Architecture
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Using Prolog programs, each rule represents a portion of an expert's

knowledge of the problem domain. This knowledge is reduced symbolically to facts

about the surrounding environment. Data supplied to the expert system is then treated as

facts and used to infer new facts. One interesting feature of some of these rules is their

apparent link to rules of thumb, known as heuristics [Ref. 107].

Among the necessary qualities of an expert system is the requirement that it

properly perform its assigned tasks. A potential problem is that experts may not agree on

what is proper. For example, consider two builders each constructing a house of similar

design. While most of the assembly priorities would be similar, the experts could

disagree on matters such as the density of fasteners required for a particular kind of

material. One advantage gained by using artificial intelligence techniques is the

flexibility to allow experts to set their own priorities by modifying the expert system rule

base without any changes to the other parts of the system concerned.

Expert systems are also advantageous in that they have the ability to explain

their path of reasoning, although in today's systems the explanation is usually nothing

more than a trace of the rules proven to be applicable.

One consideration in the development of an expert system is that the code be

partitioned according to the functional areas of concern. This is important because many

experts are limited in the breadth of their knowledge. Therefore, the code should be

divided in such a way that each expert has responsibility for that portion of the system

pertaining to iis area of expertise.

2. Translator Implementation

A simple one room house is used to demonstrate our expert system translator.

Figure 36 shows a design schema for this example.
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Figure 36. Design Schema
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a. Schema Data

The schema data consists of semantic network-type relationship

information from the conceptual schema for a particular product. This schema data will

be used by the expert system translator to associate design data according to the

conceptual schema relationships. The relationships supported by our system are the

KIND-OF (instance) and PART-OF (aggregation) [Ref. 1081. The PART-OF relationship

provides an attribute inheritance mechanism whereby the system can infer attribute values

in cases where those values were incompletely specified by the designer. Inheritance

begins at the closest ancestor and continues up the ancestral hierarchy until a value is

found. The relationships in the conceptual schema are stated in the form of facts, as

shown in Figure 37. Our system distinguishes between schema data and the conceptual

schema because the separation of these allows a user to modify the original conceptual

schema in the design process by modifying the schema data without having to change the

schema itself. This adds flexibility to the system and permits the conceptual schema to be

implemented independently (i.e., it can be represented in a form most appropriate for

processing by CAD) of the schema data which will be used by the expert system

translator. If no modification is made to the conceptual schema during the design process,

the schema data does not have to be re-generated for each product.

partof (house, floorplan). parLof (house, Interior).
partof (house, shell), part of (house, roof).
part.of (Interior, story). part of (story, room).
part-of (story, space). part of (room, face).
parLof (space, face). partof (face, sub-cover).

Figure 37. Conceptual Schema Data
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b. Design Data

The design data consists of the instances of the prototypes created during

the design process. All slots are filled in, with default, inherited, or specified attribute

values. As prototypes are instantiated, KIND-OF facts are asserted which associate the

instance with the type from which it was created. Figure 38 shows an instance of a

prototype of type face and the design data which corresponds to it. The kind-of (facel,

face) fact tells the translator that this instance, named, facel, is of type face. Note the

close correspondence between the design data, written in Prolog, and the instance of the

prototype. The properites or attributes from the prototype become predicate names and

the values of the attributes become arguments to those predicates. In the case of

Rom: lmsll

",h odor

PROTOTYPE usw _ __:

Wdth 32 mAh

hnmLx (0)
nom-LY (-0)
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dbwieion (fm, tIK 115, whe).
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Figure 38. Prototype/Design Data Relationship
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dimensions, the names height, width, and depth are treated as attribute values, as shown

in the design data.

The prototype shown in Figure 38 can be considered to be complete, even

though no value for finish color is shown. The value of finish color will be determined

during the translation process using inheritance. Since facel contains cover2, the

inheritance mechanism will look at the design data for cover2 and copy the value of the

finish color given in that portion of the design data. When all of the instantiated

prototypes are completed, the design process itself is considered to be complete, and the

design data is ready to be used by the expert system translator.

c. Standards Data

Design and manufacturing systems have to take into account a wide

variety of Federal, State, local, Occupational Safety and Health (OSHA), quality

assurance, and other standards prior to manufacturing a product. For example, a design

could call for a 1/4" inside diameter pipe in a specific location, but a local building code

may specify a 3/8" minimum inside diameter. In this case, the design specification must

be changed to reflect the regulatory requirement. For a given product, thousands of

interactions are possible between existing standards and specifications generated from the

design process.

These standards are represented in the system by Prolog-style rules to

facilitate their enforcement by the expert system translator. Figure 39 gives an example

of the implementation of a regulatory requirement.

The maximum and minimum facts shown on the first two lines provide

the limits for a particular type of pipe. The passed predicate indicates that the minimum

and maximum values with their respective units will be checked against the design values,

indicated by the variable Z and units variable Units. The convert predicate converts the

standards units of measure to the units in which the design object is measured. The

checkstandards predicate would compare all three measurements to a common unit of

measurement and verify that the standard was met.
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maximum (pipe, piastic12, diameter, 3, Inches).
minimum (pipe, piastic12, diameter, 1, Inches).
passed (pipe, Type, Dimension, Z, Units)

minimum (pipe, Type, Dimension, X, Unltx),
maximum (pipe, Type, Dimension, Y, Unity),
convert (X, UnItx, Min, Units),
convert (Y, Unity, Max, Units),
check-standards (pipe, Type, Dimension, Z, Units, Min, Max).

Figure 39. Regulatory Requirement

d. Assembly Data

Assembly data includes sequencing information for assembly of

composite objects, or subassemblies, according to the relationships shown in the

conceptual schema. This assembly data covers all conceptual schemata for a given

application domain. In addition, information on standard material types and acceptable

substitutes is included, with their costs. A system could take advantage of fluctuating

costs with the substitution information to produce an optimal cost product.

The sequencing information will be represented in Prolog-style rules.

Figure 40 provides an example of a portion of a conceptual schema with the sequencing

rule to be included in the assembly data for the given product. The first operation fact to

be asserted provides for inserting the glass into the case. The second operation inserts the

case into the appropriate sill. Note that operation information includes details of specific

sills, cases, and glass. The assembly rule will produce a set of operation facts for each

window defined in the design. Each window will be separately identifiable.

In the object-oriented approach, the assembly rules would be considered

part of the operations encapsulated with each data type. We choose to separate these rules

for the following reasons. First, the separation allows us to abstract out the
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glase

assemble (W, window) :- property (W, window, Wtype),
partof (W, S), partof (W, C), partof (C, G),
property (S, sill, Stype), property (C, case, Ctype),
property (G, glass, Gtype),
assertz (operation (Ctype, assemble, glass, Gtype)),
assertz (operation (Stype, assemble, case, Ctype)), fall.

Figure 40. Component Relationships and Assembly Rule

implementation details so that the conceptual schema isn't tied to the rule-based

implementation imposed by the assembly data. The separation also functionally aligns

the conceptual schema and assembly data with the people responsible for maintaining

them.

The conceptual schema can be developed by users with little technical

expertise or familiarity with the implementation considerations necessary to manufacture

a product. The assembly data can be maintained by the manufacturing experts who are

familiar with implementation details, material properties that may lead to more cost

effective substitutions of components, and the sequences of operations used in the

manufacturing process. Another reason we separate them is that they serve different

functions. The conceptual schema is used by designers, while the assembly rules are part

of the expert system translator. The conceptual schema represents one product while the

assembly data represents all the conceptual schemata in the application domain. The
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assembly data could also contain information about the way the factory chooses to do

assembly, which is independent of any particular product

e. Translator Meta-Rules

The translator meta-rules, combined with the standards data, assembly

data, and schema data, will determine how the design data for a particular product will be

transformed into process planning data. These rules will enforce the standards given in

the standards data, and provide the actual translation mechanism which produces the

process planning data. Figure 41 provides a sample of meta rules for the house design

and construction example. These meta rules will assert new facts which represent

requirements for specific raw materials. Note that the materials list is refined for items

such as paint, nails, caulking, etc., whose requirements are expressible as a function of the

dimension of the object.

raw materals _needed
kind of (Extens, Intens),
property (Extens, finish type, Material),
property (Extens, finish color, Fcolor),
liquid (Material, Ltype, Covers, Cunlts, Lunits, Cost),
dimension (Extens, height, Ht, Htunits),
dimension (Extens, width, Wd, Wdunlts),
convert (Hit, Htunlts, Height, Cunits),
convert (Wd, Wdunlts, Width, Cunits),
Area = Height x Width x 2,
Amtneeded = Area / Covers,
Tot_cost = Amt_needed - Cost,
assertz(flquidllst (Material, Ltype, Fcolor, Amt_needed,

Lunits, Totcost), fall.

Figure 41. Sample Meta-Rule
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f. Process Planning Data

The main outputs of the translator will be a bill of materials and

sequencing information about the manufacturing operations required to produce a given

design object. The bill of materials will contain information on the assembly of

components into subassemblies and quantities of raw materials required for manufacture

of component parts. Both of the outputs of the translator fall into the category of process

planning and material requirements planning information. The two outputs combined

provide all the necessary information for the manufacturing of a product.

g. Scheduling Data

After the requirements for a new product have been determined, the new

requirements data can be combined with existing production requirements in the

scheduling phase. At this point, priority information is used to determine how to integrate

the new requirements into the existing workload. The scheduling data includes assembly

data which will be used to coordinate construction of subassemblies with production of

components and ordering of raw materials and purchased parts.

h. Operation of the Translator

The following description is based on the execution of the translator using

an example included in the translator program listing in Appendix A. Appendix B

contains the output produced by the translator for this example. The expert system

translator performs a variety of tasks in providing the interface between CAD and CAM.

The first task is to use the inheritance mechanism discussed previously to fill in any

attribute values not explicitly specified during the design process. At the same time, the

design data is validated against applicable standards. If the translator encounters

incomplete design data, the attribute name for the missing data is highlighted along with

other identifying data so that the appropriate data can be added to the system. The

translator will check all of the design data and will only continue on to the next task when

no exceptions are detected.
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The next task to be performed by the translator is to determine the

sequence of manufacturing operations necessary to produce a given product. It is possible

during this portion of the translation process for problems to arise which prevent a

product from being properly manufactured. The major problems encountered are caused

by a different type of incomplete design data. That is, not incomplete prototype

information, but cases where additional prototype instantiations should have been

included in the design process but were inadvertantly omitted. An example would be a

case where a house is designed with all of the required components except for the floor.

The translator would detect this type of omission and require a correction before the final

step in the translation process is performed.

The last step to be performed by the translator is the determination of the

raw material requirements for a product. The translator produces a complete listing of

materials, their quantities, and costs. The translator extends this output by considering

possible material substitutions and generates a new raw materials list for each substitution

it considers.

We will now discuss the operation of the translator in more detail,

continuing with the previous one-room example.

(1) Standards Checks

The first series of operations performed on the input data by the

translator are those necessary to verify that all applicable standards requirements are met.

Figure 42 contains some of the standards that were used for our one room house.

Note that while the width and height standards for doors apply only

to a door of type doorl, the depth standard for doors and the window pane quality

standard apply to all doors and windows respectively. This demonstrates the flexibility of

the language and our system.

In addition to actual physical checks, two other types of standards

data are also contained in the standards file. These are shown in Figure 43.
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minimum (door, door 1, width, 32, Inches).
minimum (door, door 1, height, 6, feet).
maximum (door, door 1, width, 4, feet).
maximum (door, door 1, height, 7, feet).
minimum (door, , depth, 2, Inches).
maximum (door, ., depth, 3, Inches).

minimum (pane, ., quality, 3).

Figure 42. Standards Checks

comment (masonry, 'approved methods must be used for building
masonry walls when outside air temperature drops below 40
degrees fahrenheit').

comment for (cover, brick, masonry).
comment for (cover, concrete block, masonry).
comment for (sub_cover, brick, masonry).
comment-for (sub-cover, concreteblock, masonry).

comment (framing, 'grade marks must be clearly visible on all
framlmg members for Inspection').

comment-for (frame, wood, framing).

check_for (sub-cover, tarpaper, [tar paper1, tarpaper2,
tarpaper3]).

Figure 43. Standards Data

The first type of standards data is the commentfor data. For

example, consider the rule comment for(framewoodframing). This rule relates any

frame made from a wood product to the comment framing. This allows data that can only

be verified during manufacturing to be output by the translator for use in process

planning.
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The other data type contained in the standards file is the check-for.

In Figure 43, the rule

check for(sub cover,tarj aper,[tar.paperl,tarpaper2,tarpaper3])

is used to verify that all sub-covers made out of tar-paper use tar-paperl, tar-paper2 or

tar-paper3. In addition, those types of tar-paper not used are listed as possible material

substitutions. These lists of possible substitutions will become important again when

determining raw material requirements later in the processing. Figure 44 illustrates the

use of this type of standards check.

check for sub-cover subcoverl4

subcover subcoverl4 meets requirements; allowed substitutes are:

- tar_.paperl

- tar paper3

Figure 44. Substitution of Materials

Note that the design data currently has sub-coverl4 made from

tar-paper2. The other two types are listed as possible substitutes. For more realistic

situations, substitutions of one material may affect other parts of the product. For

example, consider a case where several types of plastic have been listed as acceptable for

the product piece in question. If glue is being used on the plastic during the

manufacturing process, different plastics may require different adhesives. Therefore,

caution must be used in making substitutions. Sample output from the standards checking

portion of the translator is shown in Figure 45.
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check for frame frame3

grade marks must be clearly visible on all framing
members for Inspection

check for sub.-cover subcover7

check for cover cover6

approved methods must be used for building masonry walls
when outside air temperature drops below 40 degrees
fahrenheit

Figure 45. Sample Translator Output (Simulated)

(2) Product Assembly

Once the standards checks have been completed, the translator must

determine the product assembly sequence. To build our one room house, we would

expect the foundation to be erected first. Figure 46 is a listing of Prolog rules used to

generate the assembly steps for the frame foundation and walls.

The first frame selected for assembly is the foundation. This frame

is located by finding a face which is part of the house being built and which also faces

away from the ground. The trans_partof(YfaceH) will locate any face that is part of the

house represented by the variable H. Then normal_Z(Yface,1) checks if the Z

component of the normal to the face of interest is equal to one. If so, then this face is a

floor. Figure 47 shows example orientations of normals for our one room house.

Any normal parallel to a coordinate axis will have that axis'

component equal to one in value if it points in the positive direction along the axis and

equal to minus one if it points in the negative direction. For the example house, only the

normals to the faces contained in the roof do not meet these requirements. It is not
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r do foundation frame/
assemble (H, house) :

kind-o.f (Yface, face),
trans..artof (Yface, H),
normal -Z (Yface, 1),
contains (Yface, L),
member (Frame, L),
kind -of (Frame, L),
property (Frame, materla~type, Mtype),
assertz (operation (Frame, assemble, 'material type:', Mtype)).

P do frame perpendicular to ground ~
assemble (H, house) :

kind -of (Yface, face),
trans~artof (Yface, H),
normal Y (Yf ace, 0),
normalZ (Yf ace, 0),
contains (Yfaoe, L),
member (frame, L),
kind -of (Frame, frame),
property (Frame, materla~type, Utyp.),
assertz (operation (Frame, assemble, 'material type:', Mtype)).

assemble (H, house) :
kind -of (Yface, face),
trans..partof (Yface, H),
normalX (Yface, 0),
normalZ (Yface, 0),
contains (Yface, L),
member (Frame, L),
kind -of (Frame, frame),
property (Frame, material type, Mtyp.),
assertz (operation (Frame, assemble, 'material type:', Mtype)).

Figure 46. Frame Assembly Rules
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Figure 47. Orientation of Normals

necessary that any face meet this requirement; it has been done only to simplify the

example.

Once the floor frame is in place, the second and third rules in Figure

46 locate the wall frames and add them to the assembly list. The second rule looks for

faces with normals parallel to the X axis by specifying that the Y and Z components of

the normal are equal to zero. Similarly, the third rule locates those faces parallel to the Y

axis. In Prolog, backtracking will force these rules to be tried until no more valid

solutions are found. In this way, we locate all faces meeting the specifications of each

rule. Therefore, we only need be sure that each rule does indeed fully state all

specifications of concern.

In Figure 48, the rules which generate assembly data for the ceiling

and roof are shown. The only notable difference from our previous rules in Figure 46 is

that faces associated with the roof are located by using the contains relation associated

with the roof. This is a better method than using normals since the normal vector for a

roof face can vary depending on the design of the house. The only framing left to be

performed is for the windows and doors. Figure 49 lists the rules which handle these two

cases.
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1. ceiling frame1
assemble (H, house)

kind-of (Yface, face),
trans..partof (Yface, H),
normal-Z (Yface, -1),
contains (Yface, L),
member (Frame, L),
kind of (Frame, frame),
property (Frame, materlaltype, Mtype),
assertz (operation (Frame, assemble, 'material type:', Mtype)).

/* roof frame '1
assemble (H, house) :

kind-of (Roof, roof),
transpartof (Roof, H),
kind-of (Yface, face),
transpartof (Yf ace, Roof),
contains (Yface, L),
member (Frame, L),
kind of (Frame, frame),
property (Frame, material jype, Mtype),
assertz (operation (Frame, assemble, 'material type:', Mtype)).

Figure 48. Assembly Rules
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assemble (H, house)
kind of (Door, door),
trans.oartof (Door, H),
property (Door, materiaLtype, Mtype),
assertz (operation (Door, assemble, 'material type:', Mtype)),
getfaces (Door, Facel, Face2),
assertz (operation (1 ', '-attach to', Facel, Face2)).

assemble (H, house)
kind of (W, window),
transpartof (WH),
contains (W,L),
member (Sill, L),
kind of (Sill, sill),
assertz (operation (Sill, assemble, 'window sill for:', W)),
getjaces (W, Facel, Face2),
assertz (operation (' ', '.attach to:', Facel, Face2)).

Figure 49. Rules for Framing

Again, both rules only check particular parts of the house. For the

door, we determine its material and the two faces to which it is attached. The same is

done for the window except that the sill is treated as its frame. Again, backtracking is

used to get all occurrences of windows and doors.

With all the framing in place, the faces must now be constructed.

Figure 50 gives the code to handle this. Note that the exterior and roof are constructed

first, and then the interior room itself. For each area, the contains relation is used to get a

list of all components, including faces, and the information is passed to an

assemble(L,face) routine to erect only the faces. This is actually a series of routines that

use both backtracking and recursion to determine the assembly data. Figure 51 gives the

routines that start the process.

The first and second rules in the list handle two different cases,

non-floors and floors respectively. Any face pointing directly upward is considered a

floor. In our example, there is only one floor. The first rule takes precedence over the
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assemble (H, house)
kindot (E, exterior),
transparof (E, H),
contains (E, L),
assemble (L, face).

assemble (H. house)
kindof (R, roof),
tmns~)artof (R, H),
contains (R, L),
assemble (L, face).

assemble (H, house)
kindof (R, room),
transpaflof (R, H),
contains CR, L),
assemble (L, face).

Figure 50. Rules for Assembling Faces

assemble (L, face)
assemblel (1, [1, face).

assemble (L, faew) :
member (Face, L),
noemal-Z (Face, 1),
aasertz(operatlon Ccomment, 'build floor as last step', ,
contains face, LI),
aseemble &1L], [Li], faew).

assemblel CL, Li, face)
member CFace, L),
not CNonn&LZ (Face, 1)),
delete (Face, L, 1.2),
contains (Face, 1-3).
assemblel (L2, [L3ILI]1, face), 1.

asseinblel (L, LI, face) *
assemble2 CLi, Li, face), 1.

Figure 51. Rules for Components of Faces
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second and calls the third rule in the same figure. The third rule simply finds all faces

which are part of the area of concern but are not facing upward. Looking at the left side

of the third rule, assemblel(L,Ll,face), L is the set of parts determined using the contains

relationship earlier and Li is a set which we will construct. Li is initialized to nil when

the first rule calls the third rule. When the third rule finds a face meeting its requirements,

the contains relation is again used to determine the parts of the face. This set of parts is

added to LI and assemble 1 recursively calls itself looking for more faces. When none are

found, we fall through to the fourth rule which calls assemble2. The ! symbol at the end

of the assemblel rules prevents the system from backtracking into them. It will only

proceed forward into these rules. Backtracking is not necessary since we exit these rules

only when all faces meeting our specifications are found.

Looking again at the second rule in Figure 51, we put only one face

in the list at a time. Backtracking is necessary in the case where there is more than one

possible floor face. This may or may not be desirable depending on the house design.

For the other faces, a list of all faces in the area of concern is created using recursion to

allow a search for common building materials to better organize the design data.

Figure 52 shows the routines necessary to complete the face

assemblies. Note that assemble2 will recursively call itself until there are no face parts

left. It then falls through to the last rule which succeeds and thus exits. Again, no

backtracking is allowed or necessary.

The first two rules in Figure 52 search for all sub-covers letting

those sub-covers made of material already used in the area of concern take priority over

material not yet used. This is accomplished by searching through all the current operation

predicates looking for sub-covers already processed that use the same material. If such a

sub-cover is found, then a search is performed over the list of all sub-covers in the area of

concern to attempt a match. If a match is found, then that material has already been used

and will take priority. If no match is found, then the next sub-cover in the next face is

listed in the assembly report.
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assemble2 (Full j, L, face)
member (Face, L),
doelete (Face, L, Li),
member (Item, Fae),
klnd...of (Rtem, sub..cover),
property (htem, materlal-type, Utype),
operation (Y, ._ , Mtype),
member (Facel, FuILL),
member (Y, Facel),
assertz (operation (item, assemble, 'material type:', Mtype)),
assemble2 (FuIlL. [Face2ILlI, face),!1.

assemble2 (FuIlL, L, face)
member (Face, L),
delete (Face, L, Li),
member (tem, Face),
kind-of (item, sub cover),
property (Item, inateriaLtype, Mtype),
assertz (operation (item, assemble, 'material type:', Mtype)),
delete (item, Face, Facel),
assemble2 (FuII..L, [Face2ILlI, face),!1.

assemble2 (FuIj.., L, face)
member (Face, L),
delete (Face, L, Li),
member (Item, Face),
k~nd of (Item, cover),
property (Item, materil-type, Mtype),
not (liquid ((Mtype, paint, - -- J9
operation (Y, __, -, Mtype),
member (Facel, FuILL),
member (Y, Facel),
assertz (operation (Rtem, assemble, 'material type:', Mtype)),
delete (Item, Face, Fa=92),
assemble2 (FuILj., [Face2ILi), face), I.

assomble2 (FuILj., L, face).

Figure 52. Rules for Completing Faces
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The third and fourth rules provide a similar function for the covers

except that covers made from paint are not yet allowed to be listed. The painting will be

done at the end of the house construction to prevent damage to the finish.

The house is now close to completion. The window panes are

inserted into place, the windows and doors are painted, and the doors are installed using

the appropriate doorknobs and hinges. Now is the time to complete the painting of the

faces which was previously postponed. Figure 53 shows the rules for painting faces.

assemble (H, house)
klnd.of (R, roof),
trans..partof (R, H),
contains (R, L),
palnt-face (L).

assemble (H, house)
kindof (E, exterior),
tmns..partof (E, H),
contains (E, L),
paint-face (L).

assemble (H, house)
kind of (R, room),
transpartof (R, H),
contains (R, L),
paint-face (L).

Figure 53. Rules for Painting Faces

Note that first the roof is painted (if necessary), then the exterior and

lastly we paint any interior surfaces. The paint-face routines are similar to ones we have

previously discussed. The one room house is now fully constructed.

(3) Raw Materials Listing

With the assembly data finished, the translator must now determine

the raw material requirements to build the house. This is done by calling on the
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rawmaterials needed rules. All the rules work in much the same manner. They first

determine what component is being considered, then the material associated with this

component, and lastly the dimensions of the component. All dimensions are converted to

a common unit of measurement prior to calculations. Those parts of the house associated

with a face such as a cover or sub-cover call a routine getarea to determine the surface

area involved. This special routine is necessary since faces may have areas such as doors,

windows and openings which subtract from the total area of the face to be covered. This

is handled by calculating a negative area for each face to be subtracted out prior to

material requirements calculations. This negative area is then asserted as a fact for each

face prior to actual entry into the raw materials needed routines. A sample calculation

routine is shown in Figure 54.

rawmaterials needed
kind-of (Extens, sub-cover),
dimension (Extens, depth, Th, Thunlts),
property (Extens, materlaltype, Material),
material (Material, _, Ht, Htunlts, Wd, Wdunlts, Dp, Dpunits,

._, __ . .Cost),
match (Ht, Htunlts, Wd, Wdunlts, Op, Dpunlts, Th, Thunits,

ActHt, Unita1, AcLWd, Units2),
get.area (Extens, Area, Units),
convert (ActHt, Units, ActHt2, Units),
convert (ActWd, Units2, Act Wd2, Units),
Num_UnIts Is (Area / ActHt2 * ActWd2)),
TotCost Is (Num_UnIts * Cost),
add-material (Material, Num Unks, Tot-Cost), fall.

Figure 54. Sample Calculation Routine

One aspect of how the above example works not yet mentioned is

the call to match. This rule attempts to find a match between the dimensions of the

material to be used and the thickness of the sub-cover within an acceptable tolerance.

This information is then used to determine the orientation of the material within the
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sub-cover. For example, if a board measuring two inches by four inches by four feet is

used to build a sub-cover which is four inches thick, then the two inch dimension would

be used for area calculations. This type of check is necessary since the dimensions

height, width, and depth are based on the view of the person determining the values.

Once the units of material required and cost are determined, these

values are added to the total by calling add material. This rule first checks for any

previous data on this material. If some is found, then a new total is calculated and saved.

Otherwise, a new fact on the material of concern is created and saved.

The only other unusual calculation performed during the material

calculations determines the frame requirements along the center of the roof, between the

roof and the ceiling. We need the height of the roof above the ceiling to make this

calculation. This is easy to do since the normal vectors for the roof faces are known. It

turns out that each component of the normal is equal to the cosine of the angle created by
the intersection of a line parallel to that component's axis and the plane containing the

other two axis [Ref. 105]. Figure 55 demonstrates this concept.

X - Y plane

Z axis

Y axis

Y distance along X-Y
U plane Is equal to

/ cos B for a normal
vector U

X axis

Figure 55. Computation of Normal
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The Z component of the normal vector is equal to the cosine of the

angle created by the intersection of the normal and the plane containing the X and Y axis.

With this fact, we can calculate the angle of intersection, Beta, of the roof and the house.

Using the dimensions of the roof faces, it is now possible to determine the height of the

roof above the ceiling since sin(Beta) is equal to the height of the roof above the ceiling

divided by the length of the roof face.

Once the quantities of materials and their costs have been

determined, a Raw Materials Report is produced. The report lists the units required and

cost for each raw material used. Following the list of raw materials is a total cost for the

product. Figure 56 gives an example of this report.

After the initial Raw Materials Report, the translator examines

possible material substitutions reported during the standards checks and makes each

substitution, one at a time, to generate a new report. Figure 57 is an example of a

modified Raw Materials Report output by the translator. It shows the cost for parts when

sub-coverl4 is made out of tar-paperl instead of tar-paper2.

D. SUMMARY

In this chapter we described the high-level approach to integration in detail. We

presented the data requirements for integrating CAD and CAM, the two activities

interfaced by our expert system translator. The data interactions between these two

activities were described in detail and demonstrated in our implementation of the

translator.
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Raw Material Report

Ham Q= Units .Mquim

door1 $16 1

windowl $30 1

concretel $1737 347.5

woodS $3582 434.2

tar..paper2 $841 6.7

hardboard32 $211 1.5

hardboard34 $147 1.5

hardboard78 $200 .7

hardwood9 $900 75

sheath.paper24 $64 .9

shingle12 $2020 1616

brick88 $4224 3673

palnt9 $8 1

paint17 $4 .6

paint2l $12 .9

Total material cost Is $13996

Figure 56. Raw Materials Report
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sub_cover 14: substitute tar .paperl for tarpaper2

Raw Material Report

112h1 CMa Un ffluBrec
doori $16 1
windowi $301
concretel $1737 347.5
woodS $3582 434.2
tarpaper $504 3.4
ter..apr2 $420 3.4
hardboard32 $211 1.5
hardboard34 $147 1.5
hardbosrd78 $200 .7
harclwoodS9 $900 75
sheath...aper24 $64 .
shlnql912 $2020 1616
brick86 $4224 3673
paint!) $8 1
pslnt17 $4 .6
palnt2l $12 .9

Total MOmaI cost Is $14079

Figure 57. Modified Raw Materials Report
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VII. LOW-LEVEL INTEGRATION OF MANUFACTURING

FUNCTIONS

A. MOTIVATION

In Chapter VI, we discussed the integration of product design and production

functions using an expert system translator. We discussed the manufacturing cycle and

the role that design functions play in that cycle by describing their data interactions.

Unlike previous process-oriented approaches, where a simple interface is placed between

manufacturing processes, our overall approach can be characterized as data-oriented.

With our approach, manufacturing activities will be grouped into several cooperating

systems, each with a single database server as its core; an approach we call low-level

integration.

In the current manufacturing environment, islands of automation provide computer

support for most manufacturing activities. In other words, there is a separate computer

system for each of the boxes shown in Figure 58. Some automate the design drawing

process, others automate process planning functions, and still others automate the

ordering of inventory parts. Although each phase is now more or less automated, the full

potential of computer-supported manufacturing cannot be realized unless these diverse

computer systems communicate adequately with each other. In the current environment,

data used in one phase cannot be used directly by the system supporting another phase.

For example, design data of a product in a computer-aided design (CAD) system cannot

be used directly by a computer-aided manufacturing (CAM) system for process planning

because these systems use completely different formats for data storage. To make things

worse, these data formats are often proprietary.

So the industrial and mechanical engineers have asked themselves an inevitable

question "Is it possible to have Computer Integrated Manufacturing(CIM), that allows all

phases of manufacturing to utilize each other's data?" Many papers on the Computer
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Integrated Manufacturing topic which we have come across in the proceedings of

conferences such as AUTOFACT and CIM-Intemational use the high-level approach

discussed in Chapter VI. At the early stage of our research, we too wrote a Prolog data

translator, also described in Chapter VI. The high-level approach is nice in that already

existing systems need not be modified. But the approach is not a long term solution to the

integration problem. This is merely an interface, a bridge shall we say, that simply
"connects" different components. The term "integration" should mean an embodiment of

pieces into a working whole, not just a juxtapositioning of them. By adding the

translators into the system, the whole manufacturing environment becomes even more

complex; there are more pieces of software to take care of. What would happen if the

internal workings of one component system are modified? We must write a whole new
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translator! This approach may be acceptable as a short-term, interim solution, but not as a

final solution for true integration.

There is a second approach. The Society of Manufacturing Engineers (SME)

proposed the CIM Enterprise Wheel approach depicted in Figure 59. As we can see from

the figure, the critical part is a common data server, the kernel of the Enterprise Wheel.

The figure makes sense. But, is it realizable?

+ Menufauring Mansement & Human Resource Management +

Product Process
analysis dc~

deig tatiori
simulation

malterials shop
handling resourcm gmt & __o
"'"r IIi I.......................... I , I ,- I ll............

SI assembly s *ystema material~ . achtue Is
......................... ..................... ..

II Ill

n ,ectioV I common d scheduling
test

materials qluality prces .Pr....-" ocessing & "....,
facilities planning

Automation IManuteturing

+ Strategic Planning +

Figure 59. CIM Enterprise Model

There are actually two ways to view this figure. The first one is to literally treat the

kernel as a centralized data management system. This centralized data server is normally

interpreted as a relational database management system. When the relational database

management system came into existence it was adapted in many diverse application areas

beyond the obvious business data processing. One of them is in the manufacturing

environment. We in the database community generally agree that for the relational

DBMS to be truly applicable to non-traditional areas, it must be extended to handle more

complex objects and semantics involved in manufacturing environment. Many good
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projects, such as [Refs. 100, 103, 109, 110, 1111 and others, have focused on handling

complex objects and semantics in the database community. But many papers we have

come across in the proceedings of industrial and mechanical engineering conferences

such as AUTOFACT use the unextended, currently available relational systems. They

have treated an unextended relational system as a panacea for the data handling problem

in Computer Integrated Manufacturing. We in the database community know better:

either the relational system must be improved or a completely new system must be

developed.

The second way to view Figure 59 is that the kernel data server is not the physical,

centralized database but a logical one. The kernel is a common data model applicable to

all phases of manufacturing. The actual operating environment will realize this kernel as

a collection of distributed, semi-autonomous database systems. In our research, we have

taken this approach -- a common data model applicable to all phases of manufacturing --

with one major difference from what is envisioned in the CIM Enterprise Wheel.

After reviewing other works in Computer Integrated Manufacturing, we noticed a

remarkable commonality among them. Whether they use the interface or Enterprise

Wheel approach, they are all process-oriented. They accepted the traditional way of

categorizing manufacturing activities into design, engineering, numerical control
programming, process planning, inventory control, scheduling, etc. and then proceeded to

"integrate" them. On the other hand, our work may be classified as data-oriented. We

ignored the traditional categorization of activities.

We will show that the single activity of designing a product also outputs the

product's process plan. In other words, from a data-oriented perspective, design and

process planning are not separate phases of manufacturing because both of them can be

supported by a single data server. We will rename them as the preparatory phase of

manufacturing.

We will also describe how our proposed data model, without any modification, can
be used to capture the semantics involved in describing a shop floor layout This will be

the main information used in the Production Monitoring stage shown in Figure 1. The
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function which requires this information is the scheduler. We will describe a simulation

technique for scheduling and show that data for simulation is readily available from a

database server maintaining a shop floor layout -- a direct benefit of a data-oriented

approach. Consider what will happen if a process-oriented approach is taken for the

scheduling problem. In other words, what would we do, given a task of automating a

scheduling problem? We would first propose some kind of algorithm for finding an

optimal or near-optimal solution. Then, we would identify the data required as input to

the algorithm. Since we have solved the problem without much regard to the data already

in some database, we most likely will not be able to find a single source for all required

data. We will thus create a special data server, which holds all necessary data, just for the

scheduler. This data server will necessarily hold duplicate information, which leads to

potentially harmful data inconsistency. Since this data server is not connected to other

data servers in any way, data must be extracted manually. It is not economical to do

manually, so eventually we will develop software to automatically extract data from other

data servers. This software is exactly the translator we mentioned in the high-level

interface approach to integration. It should be clear from this example that this approach

is in fact exacerbating the integration problem.

Perhaps our major contribution is breaking the prevalent "mind set" of the

process-oriented approach. We hope that once this "mind set" is eliminated, expedient

progress toward true integration can be made.

B. THE DATA-ORIENTED APPROACH

In our preliminary research, we divided the basic manufacturing functions and

activities into four stages based on the type of function they performed. These four stages

were depicted in Figure 1, which is reproduced as Figure 60 for convenience. We applied

our data model to the design stage and developed the high-level translator described in

Chapter VI [Ref. 94]. After further research, we published a comparison of the three

approaches to integration discussed in Chapter III [Ref. 112]. At this point we decided

that the path to true integration involved the low-level integration approach, and
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conceptualized our data-oriented solution [Ref. 1131. We applied our data model to the

process planning function, the focal point of the production planning stage of Figure 60,

and recognized the relationship that process planning has to product design using our

data-oriented perspective [Ref. 114]. We then determined that application of the same

data model to shop floor layout, the main data manipulator in the production monitoring

stage, would integrate the product design, production planning, and production

monitoring stages [Ref. 115]. The fourth stage, business activities, could be easily

integrated with the other three since the information used in business activities is available

as a byproduct of the other three stages.

Produta
Design

appi o f e Production onbrg
I*,= IMoting

Figure 60. Stages of Manufacturing

In this chapter, we will discuss our data-oriented approach in more detail. We will

apply our data model to product design and process planning, which we have combined to

form the preparatory phase of manufacturing. We will conclude the chapter with the

application of our data model to production monitoring.

1. Preparatory Phase of Manufacturing

We will begin this section by showing how our data model supports the

semantics of product design. We will then discuss our approach to process planning and
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the application of our data model to it. Our discussion continues with the integration of

the design and process planning functions.

a. Modeling the Semantics of Product Design

There are a number of concepts inherent in product design which need to

be modeled in order to adequately support that environment. Perhaps the best way to

demonstrate the support provided by our model is to describe the design process from the

viewpoint of the design engineer, showing at each step of the process how the model

handles the semantics involved. The explanation will be accompanied by figures

depicting a simulated user interface to our model.

The first decision faced by a design engineer in designing a new product is

choosing the best starting point. The new product can be either designed from scratch or

designed by modifying a previous product design. If the new product is designed from

scratch, a type hierarchy will be shown to the engineer. The types in this hierarchy will

be related by the generalization and specialization abstraction concepts. There will be one

type in the hierarchy for each product in the application domain. Figure 61(b) shows a

file Mtyp version Instance query file type version Instance query
I creat type hierarchy office

ierarche equipment

stapler sharpener hole

punch

dsk portable 3 2
hole hole

(a) eemmnd Issued (b) rmsut

Figure 61. Type Hierarchy Displayed
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sample type hierarchy used in the design of office equipment. This hierarchy was

produced as a result of the engineer selecting the type menu and the hierarchy command,

as shown in Figure 61(a). The design engineer will select a type from the hierarchy by

positioning the arrow cursor (not shown in the figures) on the desired type and pressing

the left mouse button. This is indicated graphically by the bold rectangle surrounding the

selection.

Once a type is chosen, an instance of that type is created and a component

diagram will be made available for further manipulation. The component diagram

consists of other types related to the chosen type by the aggregation abstraction concept.

The instance of a selected type is created by using the instance menu and create

command, as shown in Figure 62(a). Using a combination of the information about the

type selected and the menu and command choices, the appropriate component diagram

will be displayed (Figure 62(b)).
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Figure 62. Instance of a Type Created

If the new product is designed by modifying a previous product design,

the engineer selects the appropriate type from the type hierarchy and asks for the version
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hierarchy for that selection (Figure 63). The engineer selects the version from the version

hierarchy which is the closest to the new product being designed. An instance of the

selected version is created. The component diagram for the type from which the selected

version was created is then made available to the engineer (Figure 64).
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Figure 63. Version Hierarchy Displayed
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Figure 64. Creating an Instance of a Version
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At this point the engineer has an instance of either a type or an instance of

a version and a component diagram to work with. We will continue the discussion

assuming that the engineer is working with an instance of a type. As the property values

for the instance are provided and new component types are chosen from the component

diagram, the design schema for the new product takes form. Figure 65(a) shows a

selected component of the component diagram and the property command in the

instance menu being invoked. A prototype for the selected component appears, as shown

in Figure 65(b), with slots for property names and values. The property name, its domain,

and its value can be specified at this time, or the engineer can defer the property value

specification until a later time. If the property values are specified separately, the

appropriate component of the component diagram is selected and the property value

command in the instance menu is issued, as shown in Figure 66.

file type version Instance query file type version Instance query
component diagram jcreate I specify properties! delete
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Figure 65. Specifying Properties

A distinction should be made between the two forms of aggregation found

in Figure 65. The component diagram shows an aggregation of the types which make up

a compound object (Figure 65(a)). The prototype is an aggregation of the properties of an
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Figure 66. Specifying Property Values

object. The component diagram represents the structural content of an object while the

properties in the prototype represent the informational content of the object they relate to.

The engineer continues defining properties and/or specifying property

values until either a point is reached in the design where multiple alternatives are

necessary, or the design is complete. If multiple alternatives are desired, the engineer

selects the command to create an instance hierarchy. In this process, a copy of the current

instance, with its properties and property values, will be made for the new alternative.

Figure 67(a) shows the hierarchy command in the instance menu being issued. This

command works in several ways. First, if no instance hierarchy exists for the current

design project, invocation of this command will create a new hierarchy. If a hierarchy

already exists, invocation of this command will display it, which is the case shown in

Figure 68.

For an instance hierarchy to be created, one or more property values from

the current instance must be changed to create a new alternative instance. This can be

done by either modifying an existing property value, e.g., 14 in Figure 67, or specifying a
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Figure 67. Creating an Instance Hierarchy
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Figure 68. Displaying the Instance Hierarchy
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value for a property whose value was previously undefined, e.g., width in the same

figure.

To continue the design, the engineer will select one of the instances and

use the component diagram to complete the design. Figure 69(a) shows the body 16

guage instance being selected and the property value command in the instance menu

invoked. The result of this action, shown in Figure 69(b), is the resumption of the design

process at the point where it left off before the instance hierarchy was created. When the

design resumes, a prototype for the selected instance will be used.

file type version Instance I uery file type version Instance query
instance hierarchy I cr I Spedf property values

delete
ha~ harchy

,rooertv i a
F ig 6 i uin wh Property e S i aim

body t height met rcr
14 uagece it lits e et t s .

guage int 16

(a) command Issued (b) result

Figure 69. Continuing with Property Value Specification

When the design is complete, the engineer decides whether or not to

archive the instance hierarchy since it will not be kept in its entirety by the system. The

instance from the hierarchy which represents the final product design is associated with

the version or type from which it was created using a command selected by the engineer.

The engineer may also decide at this time to create a new version from the final product

instance to be placed in the version hierarchy for the appropriate type. If a new version is

desired, the engineer will determine which property values from the final product instance
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will be used when the new version is created. Figure 70 depicts a new version being

created from the body 16 guage instance which is now completely specified. Each of the

prototypes which make up that instance will be presented to the design engineer so that

property values can be deleted to create a new version. The new version will be placed in

the version hierarchy using the save command in the file m.nu.

le Me version Instance query file type version instance query

i u nstanceI eate delete •p" values

i to to create new version

a ]a string tin

widl metric: 8

guage int 16

(a) command IseI (b) result

Figure 70. Creating a New Version

It should be cleair from the preceding description of the design process that

our model provides the maximum possible flexibility at every step along the way. At the

same time, the confusion to the design engineer about the data model operation is

minimized due to the close correspondence between the modeling choices and the design

process.

b. Our Approach to Process Planning

Process planning (PP) specifies the operations to be performed on

different workpieces at different workstations in order to complete one production cycle.

Instead of the traditional approach to PP, our data-oriented approach views PP as being

divided into four phases. In the first phase, a gross decision on the process is made,
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categorizing a product based on the degree of machining versus assembly in the process

plan. The alternative decisions are whether a part should be 1) machined from raw

material, 2) machined from a casting, or 3) assembled from smaller components. The

first and second alternatives are forms of parts manufacturing where a workpiece is

transformed from the unmachined state into the finished state by stepwise changes of its

shape using machining processes. Assembly can be visualized as a process in which

individual components such as parts and sub-assemblies are added to the finished product

by assembly processes using assembly fixtures.

The second phase selects the appropriate operations and sequencing

according to the decision made in the first phase. Each operation can be viewed as a

transformation which takes a product from one state to another.

The third phase selects a machine type for each operation selected in the

second phase. This selection is based on standard PP practice and does not take into

account the actual availability of machines on the shop floor. In the parts manufacturing

case, tasks performed during this phase include the layout of cutting sequences and a

pattern, determination of cutting parameters, i.e., depth of cut, feed rate, speed of cut, and

calculation of machining times.

The fourth phase selects a tool type for each machine type selected in the

third phase. Again, this selection is made based on standard PP practice and not on

availability of specific tools.

c. Modeling the Semantics of Process Planning

In the traditional manual process planning activity, data describing a

product is placed on paper in the form of drawings and specifications. Both are revised

and developed to higher levels of detail, potentially producing redundant and sometimes

incomplete data. The redundant data leads to maintenance and consistency problems.

The data which is produced in one process plan has little chance of being used in

subsequent plans due to its manual nature. The engineering drawings produced during

this manual process are given to a planning engineer who decides which operations,
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machines, and tools are required. We will show how the use of our model in process

planning alleviates these problems and provides a natural environment for an industrial

engineer to work in.

Our approach to PP is to represent the set of alternative process plans for a

product family as an acyclic directed graph, with the possible choices from each phase of

the PP activity present. Figure 71 provides an example of two alternative process plans

for a pencil sharpener, represented as an acyclic directed graph. The middle portion of

the graph is used by both alternatives to produce the blade for the sharpener. Given this

example, we will describe the activities involved in producing the alternative process

plans, again showing at each step how our data model handles the semantics involved.

bodydbl.ru~ bd

grind

Figure 71. Alternative Process Plans

The industrial engineer has to be familiar with the product to be

manufactured before beginning process planning work. Using our paradigm, the same

conceptual schema used by the design engineer is available to the industrial engineer (as a

component diagram). The conceptual schema represents a generic product to be designed
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and manufactured. Using the information about the aggregations of types in the schema

and the properties defined during the design process, the industrial engineer will develop

a generic process plan.

Work on the process plan can be done from scratch or using previous

work saved by the system, a situation analogous to that faced by the design engineer at

the start of product design. If the decision is made to work from scratch, the industrial

engineer will use the conceptual schema for the product to guide the development of the

process plan. The first step is to create an instance of the type which the conceptual

schema represents. Next, a component of the schema at the lowest level is chosen. The

development of the process plan will be a bottom-up process, since the bottom-most

portion of the conceptual schema represents the most primitive components of the product

to be manufactured. Once the process plans for these primitives are defined, the next

higher level can be considered. Since the levels in the conceptual schema are related by

the aggregation abstraction concept, the process plan for each higher level will only have

to deal with combining the process plans for the next lower level. Normally, this will

entail some type of assembly procedure which is fairly easy to specify. The development

continues, step by step, until the topmost level is reached.

For each primitive in the conceptual schema, the industrial engineer will

determine which information can be specified directly and which has to be parameterized,

or deferred. Parameters will be replaced by data for a specific product when this generic

process plan is actually used in production. Information such as machine type and tool

type may be specified during process plan development. However, other information

such as the length of a cut will be a function of the dimensions of the workpiece and will

therefore become a parameterized entry in the generic process plan.

If the industrial engineer chose to use previous work as a starting point,

the version hierarchy for the type of product concerned would be displayed. As with the

design engineer, a choice would be made form the hierarchy which is as similar as

possible to the desired process plan. An instance of the selected version would be created
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and work would proceed level by level, with the use of the conceptual schema, in the

manner described previously.

When the generic process plan is completed, it will be added to the

version hierarchy (in the appropriate place) of the type from which it was directly or

indirectly created.

Once again, we have demonstrated that our model naturally supports a

major manufacturing function. We have provided maximum flexibility in the

development of process plans by making use of several of the abstraction concepts

available in our model. By producing generic process plans which are parameterized and

reusable, we have implemented the group technology concept and reduced the complexity

of developing process plans.

d. Integrating Design and Process Planning Functions

We have shown the role that group technology plays in process planning

and how our data model exploits that role in reducing the complexity of the problem of

developing process plans. The abstraction concepts used in our data model easily capture

the semantics of the process planning environment. As mentioned earlier, we have used

the same data model to capture the semantics involved in the product design activities.

We have been successful up to this point in applying the same modeling concepts to

different manufacturing functions.

The design and process planning functions utilized the same conceptual

schema and modeling concepts for their respective work. This means that for a given

product, its conceptual design schema has a parameterized process plan associated with it.

This parameterized process plan is a generic process plan for the family of parts

represented by that schema. For example, Figure 72 is a conceptual design schema for a

cabinet. The component door will have a generic process plan associated with it. The

process plan is generic because the actual values for the plan are not yet specified. It is

more like a template showing the general sequence of processes without the values of the

parameters specified.
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Figure 72. Conceptual Design Schema

When the designer creates a particular cabinet from this conceptual

schema, he will fill in the design details such as the dimensions, color, type of door, etc.

The generic process plan will simultaneously become a specific process plan with all the

parameter values filled in for this particular cabinet. Thus, the design activity produces

both the design and process plan for a particular product. There is no need for separate

activities for design and process planning. We have achieved integration wherein design

functions produce the required information for both activities. The integration achieved

by the process-oriented approach, on the other hand, is just an automatic interface

between the design and process planning activities. That is, by using the information

available from the design, the interface would produce a process plan. This is undesirable

from the standpoint of data consistency because it would require duplicate representation

of the products, not to mention the complexity of the translation process itself.

2. Production Monitoring

The production monitoring stage of manufacturing includes activities such as

quality control, scheduling, and shop floor control. Production monitoring gets its

prominence from the effect that misutilization of resources and missed due dates have on

the profitability of a company. Due to increasing costs and shrinking market shares, a lot

of emphasis is being put on this aspect of manufacturing.
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The focal point of production monitoring is the scheduling function. We have

already discussed the current approaches to scheduling in Chapter II and indicated the

infeasibility of producing optimal schedules which have to consider unforeseen events

which may occur (such as machine breakdown). We will present an alternative approach

to scheduling which uses the shop floor layout to allocate manufacturing resources to

process plan components. We will then show how our data model handles the semantics

of shop floor layout and conclude this section with an example to demonstrate our

approach.

a. Our Approach to Scheduling and Shop Floor Layout

Our approach to scheduling is to represent the shop floor layout as an

acyclic directed graph, where the nodes of the graph represent machines and the edges of

the graph depict the transportation media between the machines. Each node and edge in

the graph can have a job allocated to it. Figure 73 provides an example of a portion of a

shop floor. The boxes labelled "pallet" depict nodes which are pallet pools for machine

centers. This figure could have been more detailed, with nodes for the individual

machines in the machine centers.

-borri a

it*~ ~-boting machine c
ma", Mwh a

Mabng ad 60b- 3

Figure 73. Shop Floor Layout
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The process plans for all products currently being manufactured form a

subgraph of the shop floor graph at a given point in time. The components of the process

plan are divided into three categories, working, ready, and waiting. The working

components are those which have been allocated a resource. The working components

form a subgraph of the shop floor graph. The ready components are those which could

begin execution if the required resources were available. The waiting components have

prerequisite components and cannot be scheduled until those other components have

completed processing, at which time they become ready components. Figure 74 shows a

process plan, depicted as an acyclic directed graph. The components of the process plan

are labelled check-in, spindle, milling, boring, and assembly. Initially, the check-in

component will be the only ready component, the others will be waiting. Once the

check-in has been completed, the spindle and milling components become ready, and can

be scheduled concurrently if the proper resources are available.

check-in

spindle milling

Inn
boring

assembly

Figure 74. Sample Process Plan

The scheduling problem involves overlaying the ready components onto

the shop floor graph, looking for nodes with more than one component. The presence of

such a node would indicate that two or more jobs require the same resource at the same

time. For these nodes, the standard priority rules could be invoked to determine which

job will be assigned to them. The problem of scheduling now becomes a problem of

modeling the competing process plans and manufacturing resources for each designated

unit of time. This we believe is a major advantage of our approach. That is, the
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scheduling problem is reduced to a simulation of the competing process plans and

available resources, and uses the data made available by the integrated design and process

planning functions directly.

b. Modeling the Semantics of Shop Floor Layout

We previously discussed the relationship between the design and process

planning functions. The data model which we developed was used to model those

functions and provided the necessary semantic facilities to combine them into a single

activity. Our approach to scheduling and shop floor layout was expressed in terms of the

process plans created by that activity. We will continue by showing how our data model

handles the semantics of shop floor layout, the activity which drives the scheduling

function and determines the overall efficiency of production.

We will demonstrate the applicability of our data model by considering

the shop floor layout process. The resources available to be configured can be arranged

into a hierarchy of types using the generalization/specialization abstraction concepts. The

resources will be grouped into manufacturing cells to implement the flexible

manufacturing system (FMS) concept discussed in Chapter II. Each cell will appear in a

version hierarchy for the type of cell involved, and will use the aggregation abstraction

concept to associate the various resources which are the components of that cell. New

cell layouts can either be designed from scratch or developed by modifying a previously

designed cell. Once again, the situation is analogous to that seen previously in the

discussions on product design and process planning semantics. In fact, we now find

ourselves using the system we have described to design the shop floor layout; a design

which will eventually become part of the overall manufacturing system.

Individual manufacturing cells will be designed using a conceptual

schema as a guide. After all of the individual cells are completed, they will be aggregated

to form a layout of the shop floor. The information produced during the entire layout

process can be saved and used again at two different levels. Information on individual

cells can be modeled separately from the information about how those cells are

aggregated to form a shop floor layout.
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c. An Example

We will demonstrate our approach by use of an example. Figure 75

depicts the shop floor to be used throughout this example. Transportation resources are

not shown in the figure but are available to move batches from one machine resource to

another. The ovals under a particular heading represent instances of that type of machine;

i.e., there arc four actual milling machines on the shop floor. As each resource is used,

the attributes which define its implementation change to reflect the new state of the

machine. For example, the tool type attribute of a machine may vary from one job to

another.

check-in

station
0

spindle milling machines
machines

boring machines assembly stations

Figure 75. Shop Floor

Figure 76 shows the average processing time per workpiece required for

each resource in this example. In actuality, that number could vary among machines of

the same type, especially in the case where a machine is operating below its normal

capacity due to need for repair. Newer machines of a given type may also be more

efficient and therefore require less time to perform a particular operation. Our simulation

will vary capacities among similar machines to reflect these types of conditions. Figure

77 shows the number of time units required for transportation of batches from one

resource to another.
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Figure 76. Average Processing Time

time units required
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spindle machine assembly station 2

boring machine milling machine 2
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Figure 77. Transportation Requirements
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Figure 78(a) - (e) shows the five process plans to be scheduled in this

example. Figure 79 provides priority and finished product quantity information for each

process plan.

check-In heck-in chock-in

spindle milling spindle milling boring milling

boring assembly assembly
(b) (c)

assembly

check- in
check-in .

I spindle milling

boring boring

assembly assembly

(d) (e)

Figure 78. Example Process Plans

process part priority
a quantit (1sti ghest)

A 10 1
B 5 5
C 12 1
D 3 4
E 15 3

Figure 79. Priority and Finished Product Information

We will assume that the necessary raw materials have been checked in and

that the first task for the scheduler is to transport those materials to the appropriate

resource. A simulation, written in Prolog, will show the sequence of events as the
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scheduler proceeds. Besides the data from Figures 76, 77, and 79, and the process plan

information shown in Figure 78, the simulation has information about each individual

machine on the shop floor describing the time required for that machine to complete a

given operation with a particular tool. The Prolog program for the simulation is included

in the data-oriented prototype program listing attached as Appendix C.

In the first time unit, the transportation system moves materials from the

check-in station to the spindle station for process plan (a), and to the boring and milling

stations for process plan (c). Note that since process plans (a) and (c) have the same

priority, the scheduler could have moved materials to the milling station for plan (a)

instead of (c). Since it takes two time units for transportation to both the spindle and

milling stations, and three time units for transportation to the boring station, all machines

will be idle until time unit three. After the ninth time unit, the factory floor is in full

production, with each machine resource fully utilized. After the 10th time unit, one of the

boring machines becomes idle and remains idle until the 13th time unit.

After the 30th time unit, production begins winding down. The spindle

and boring machines are idle, having completed their work on the example process plans.

After 69 time units, all milling machines are idle, and the only work remaining involves

assembly stations. The simulation continues assembly work until the comnletion of the

98th time unit, when all work is completed.

One advantage in using this simulation approach to scheduling is that we

can change the parameters for the shop floor and rerun the simulation to determine the

impact. For example, if from the first simulation run we suspected that having more

assembly stations would speed up the overall operation, we could add assembly stations

and verify our suspicion. The simulation would detect bottlenecks and help to alleviate

them. The simulation could include allowances for machine downtime due to periodic

maintenance, increase in capacity of a machine due to repair, decrease in capacity of a

machine due to tool setup time, and any other foreseeable events.

Another major advantage in using this simulation approach is that the

scheduling to be performed can be modeled at different levels of abstraction, which
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provides increased flexibility and applicability. For example, if the details of the setup

time aren't important due to infrequent changes, they can be abstracted out of the

problem. An advantage to our use of Prolog as the programming language for the

simulator is that expert system technology can be applied when desired.

C. SUMMARY

In this chapter we described the low-level approach to integrating manufacturing

functions. We described our data-oriented approach and showed that the activities of

product design and process planning could be integrated using that approach. We

described the application of our approach to shop floor layout, which resulted in the

integration of the production monitoring activities with the already integrated design and

process planning activities, thus providing for integration across the spectrum of

manufacturing functions.
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VIII. EVALUATION

A. COMPARISON OF DATA MODELS

We have briefly described several data models and contrasted some of their features

with our own data model (see Chapters IV, V, VI, VUI). In this chapter, we will

consolidate and expand the discussion of current data models to provide some means of

comparison with our model. We will describe some typical scenarios from the

manufacturing environment and show how four of the existiig data models would fail to

provide the same degree of semantic support as that offered by our model.

The nature of data models precludes any quantitative comparison or evaluation of

competing models [Refs. 93, 116]. Consequently, we are limited in our ability to

quantitatively compare our model with those previously defined. In addition, it is not

possible to address every known data model in the discussion - there are hundreds of

models in existence. The models which we selected are representative of those known

models.

1. Manufacturing Activities to be Modeled

The first activity we will discuss involves the initiation of a product design

from scratch. We will assume that the product to be designed is not similar to any

previously designed product and therefore, none of the information about previously

designed products is of use.

The second activity we will address involves the product design situation

where the new product to be designed has properties and/or components which are similar

to those in some previously designed product. In this case, the designer will use the

information (from the previous product) about the similar features as the starting point for

the new design.
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The next activity we will be concerned with is complementary to the activity

just mentioned. In this case, as engineer will create an intermediate starting point for

future work. In this scenario, the engineer might know that the product design just

completed will be similar to future design efforts. The creation of this intermediate

starting point would reduce the amount of redundant design work in those future designs.

The last activity we will use involves the ability to create multiple alternatives

to be used temporarily in a product design. The design engineer may decide to pursue

one alternative, change his mind, and switch to some other alternative. All of the

alternative information must be kept and made accessible to the designer. Once the

design is completed, the information about the alternatives can be discarded or archived.

2. Support Available From Existing Models

We will begin our discussion of support available from existing models by

considering the relational data model. We have already stated in Chapter IV that this

model suffers from limited semantic expressiveness, a serious drawback to its use in

manufacturing applications. In particular, this model does not provide a means of

expressing one object as the aggregation of other objects. Figure 80 depicts a car as an

aggregation of a body, wheels, and an engine. A relational schema for this example

would have one relation for each box in the figure. The problem with trying to associate

the three relations body, wheels, and engine with the relation car is that the model has to

treat the values "body", "wheels", and "engine" in two different ways. First, they have to

car

bodyI wh..els engine:
Figure 80. Sample Aggregation
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be attribute values in the car relation to relate the car to its components. Secondly, they

have to be used as relation names for the objects they represent. The standard relational

model is not capable of matching the attribute values with the relation names in order to

model the aggregation. This is one example of the limited semantic expressiveness of the

relational model. This limitation precludes the use of this model in supporting the

activities described in the previous section.

Other models have been developed which have application potential beyond

that of the relational model due to their use of some of the abstraction concepts discussed

previously in Chapter IV. One example is the Semantic Database Model (SDM) [Ref.

100]. SDM uses the aggregation and instantiation abstraction concepts and therefore

captures more of the meaning of an application environment than is possible with the

relational model [Ref. 101]. We find two major problems in trying to employ SDM in the

manufacturing environment. First, the model has too many features. If a database model

contains a large number of features, then it will likely be difficult to learn and to apply

[Ref. 100]. Secondly, the model has no means of directly supporting the second, third,

and fourth activities described in the previous section. In order to use information from a

previous design, a new class would have to be defined such that the new class inherits all

of the attributes, but only some of the attribute values, from the previous design. SDM

has no facility for this type of inheritance. If some of the attribute values are inherited,

then all of them must be. Even if the inheritance problem were overcome, SDM would

have to create a new, separate class for each different set of attribute values to be

inherited. The basic problem with SDM is that it has no notion of a version. Without this

concept, design work always has to start from scratch and little, if any, previous

information can be re-used.

The data model proposed by Katz [Ref. 46] includes support for versions, and

therefore models the first, second, and third activities mentioned in the previous section.

However, the fourth activity, which involves alternative designs, is not supported [Ref.

46]. In addition, only a single version of an object is maintained by the system, requiring

future work to begin from a single point.
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We have made repeated reference to the work by Batory and Kim [Ref. 92]. It

is from this work that we get the definitions of version and instance used in our model. In

addition, as we discussed in Chapter V, the two models differ in their definition of version

hierarchy. The Batory and Kim definition defines version hierarchies as aggregations of

other versions, allowing for flexibility in defining the implementation details for a

particular product. Again, their model does not support alternative designs for the same

product, a feature we feel is necessary in a data model supporting the manufacturing

environment.

In the models proposed by Katz and Batory & Kim, alternative designs can be

supported by the system only if the user creates and maintains the alternatives himself. It

will be up to the user to remember the relationships between the alternatives and the

individual identifiers for each alternative. This places an unnecessary burden on the user.

In Chapter VII we discussed the support provided by our data model for the

activities mentioned in the previous section and other manufacturing activities as well. It

is clear from the preceding discussion that our model captures more of the semantics of

the manufacturing environment than any of these previously defined models.

B. DATA-ORIENTED VS. PROCESS-ORIENTED APPROACH

In this section we will present an example in which the data-oriented approach we

have developed is more desirable than the process-oriented approach. We will use this

example to illustrate the differences between the two approaches. The example we have

chosen involves the design and production of a metal table. The table has three types of

components, a top, some number of legs, and a connection for each leg which fastens it to

the top. Since we are only interested in highlighting the differences between the

process-oriented and data-oriented ap-.oaches, we will not be concerned with issues such

as design integrity constraints which have to be considered in both approaches.

We have demonstrated the differences between the two approaches by implementing

a prototype for each approach. In this section, we will discuss the prototype

implementations, show how the process-oriented approach handles our example, and then
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show how the data-oriented approach handles the same example. The discussion will be

supplemented by figures which are actual screen dumps of the prototypes with colors

converted to black. The actual implementations were developed using color to better

distinguish information shown in the display to the user.

1. Prototype Implementations

a. General Information

The prototype implementations were written in the Turbo Prolog

programming language. The prototypes use 640 x 350 resolution graphics with support

for 16 colors. The complete program listings for both prototypes appear in Appendix C.

b. The Design Module

The two prototypes begin by allowing the user to load a conceptual

schema for the product to be manufactured. The conceptual schema contains information

about properties of the components of the product as well as properties of the

relationships between components, where applicable. The user has the option of

specifying values from scratch for the defined properties, or can load previously defined

data and resume from the point at which the data was saved.

The design module screen layout contains four windows, as shown in

Figure 81. The largest window, referred to as window number one in the program, shows

the conceptual schema, the name of the file containing the conceptual schema data, and

the name of the file containing previously defined design data, if one was loaded.

Window number two appears to the right of window number one and is used as the menu

window. As various design functions are performed, menu alternatives appear in the

menu window. Menu alternatives are selected by positioning an arrow cursor using a

mouse. Once the cursor is pointing at the desired menu alternative, pressing a mouse

button will invoke that alternative. Window number three is referred to as the data

window and appears beneath the menu window. The data window is used to display

design data to the user once the Updata Data alternative is chosen from the top-level

menu. Window number four, the status window, is located beneath window number one.
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The status window is used to display messages to the user and to receive responses to

those messages.

.- r O.i.. t NN -------- VAQ

Loa C Schema
Load Dowign Data
Update Data
Sam De ig Data

Quit

Data

Btatue
Select a Command from the Menu ViNs

Figure 81. Initial Design Screen Layout

2. The Process-Oriented Prototype

Figure 82 shows the data interactions required by the process-oriented

prototype. The product design function produces design data which is then translated into

the format required by the process planning system. For the purposes of this discussion

we will assume that the high-level interface described in Chapters m and VI is used to

perform the translation function. The translated design data and other process planning

rules are used as input to the process planning function to produce the process planning

data. The difference between the process planning rules used as input and the process

planning data produced as output is that the output data is specific to a given product,

while the input rules are generic and assist the process planner in producing data for a

specific product. The process planning data is translated using the high-level approach to

produce data which can be used by the scheduling function. The scheduling rules shown
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in Figure 82 refer to information about the shop floor resources which are available at the

time the scheduling is performed.

a. ProdutdDesgn

en sthm n wow T n efordaaa

~ E translated

proem"cesgnlnntn

rules

Figure 82. Process-Oriented Prototype

a. Product Design

Figure 83 shows the screen layout after the file table.dat is loaded using

the Load C Schema alternative in the menu window. The conceptual schema shown in

this figure represents the metal table used as our example. We will assume for simplicity

sake that the designer is resuming the design using data stored previously in the file

design.dat.

Once the design data is loaded, the designer selects the Update Data

alternative from the menu window to continue the design of the table. Figure 84 shows

the screen layout at this point. The designer will select one of the types top, connect, or

leg by pressing the mouse button with the arrow cursor inside the appropriate conceptual

schema box. In the actual implementation, the color of the text representing the selected
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Figure 84. Second Level Menu
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type is changed to distinguish it from the other types. At this point, the screen layout

appears as shown in Figure 85. The user may choose to add to the existing data for the

selected type, modify that data, view that data, or return to the second level menu shown

in Figure 84.

.P-, . Orler.t" 89te ------ A-- Mu

Schema File: tabieodat
Data Fil : dign.dai t k A" dataChanqge data

View data

top quit

cownect

Status

ata
Select a Commnd fvrm the Menu Window

Figure 85. Third Level Menu

Figure 86 shows the screen layout after the Add data alternative is

chosen. The data window now contains the names of the properties for the selected

object. The status window is used to get user input to specify the values which the

properties will take on. When the data for a single object has been entered, the screen

display changes back to the display shown in Figure 85.

We will assume at this point that the designer completes the specification

of the design data and saves the data in the file design.dat.

b. Translation of Design Data

Once the designer has finished specifying valLes for the properties for the

objects comprising the desired product, and that data is saved, a translation process takes
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Figure 86. Adding Design Data

place which transforms the data from the format produced by the design system into the

format required by the process planning system. In our prototype implementation, we

assume that islands of automation exist for the design, process planning, and scheduling

functions. As previously stated, we use the high-level interface approach to convert data

between these islands of automation.

In the case of our example metal table, four legs have been defined which

connect to the top using a welding connection for two of the legs, a bracket for the third

leg, and a screw-on connection for the fourth leg. The variety of connections is used to

give some diversity to the design data.

c. Process Planning

Figure 87 shows the screen display when the translated design data

reaches the process planning function. Two exceptions have been detected by the process

planning system which will require changes to the design data. The first exception

involves the table top, where a tolerance of .1 was specified for the height, width, and
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Figure 87. Process Planning Exceptions

depth dimensions. The exception notes that a value less than .5 is unacceptable due to the

cost involved. The second exception involves the radius of the screw-on leg, which was

specified to be one inch. The factory has a shortage of one inch radius material and a

surplus of 1.5 and 1.75 inch radius material, leading to the exception.

The result of the exceptions is the automatic generation of the

memorandum shown in Figure 87, which will be sent to the Design Department. The

design data will have to be modified to conform to the exceptions noted in the

memorandum, re-translated, and re-processed by the process planning system. Note that

all of the design data will have to be re-translated and re-processed, not just the portion of

the data which was modified. In our example, the design data was changed, re-translated,

and no exceptions were noted by the process planning system the second time around.

d. Translation of Process Planning Data

When the product data is processed by the process planning system and no

exceptions are detected, another high-level translation occurs which converts the process

146



planning data into the form required by the scheduling system. In the case of our example

metal table, this translation occurs with no problems.

e. Scheduling

The translated process planning data is input to the scheduling system

where it will compete for resources with the other products being manufactured

simultaneously. Before the scheduling system can begin execution, the input data must

be screened for exceptions. The screw-on leg in our example metal table has created an

exception because the milling machine required to tap the screw threads is out of service.

Again, a memorandum is sent to the Design Department advising them of this exception.

The result of this scheduling exception, which is shown in Figure 88, is that the design

data must be modified a second time, re-translated for use by the process planning system,

a new process plan created, and the process planning data re-translated for input to the

scheduling system. In our example, the design modifications are made, the data is

re-translated and the scheduling function produces a schedule showing which -sources

will be allocated to the metal table and its competing products during production.

Shedu Iing

xcept ion Report
Memorndum

To: Des Igfn Department
From: Scheduling Department
Subject: Exceptions on design project topI

The machine pou have request", milling machine
for this project is
Out of service for 6 time units
Pleae revise gour design and resubmit.

Hit 'ENTER' to oantinue

Figure 88. Scheduling Exception
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3. The Data-Oriented Prototype

Figure 89 shows the data interactions required by the data-oriented prototype.

The product design function takes the design specifications, process planning rules, and

scheduling rules as input and produces process planning data using the values of the

object properties entered by the user during the design process. The scheduling function,

implemented using the simulation approach discussed in Chapter VII, uses the process

planning data to produce the final schedule.

rues

Figure 89. Data-Oriented Prototype

a. Product Design

The design function in the data-oriented approach operates similarly to its

counterpart in the process-oriented approach with a few exceptions. Figure 90 shows the

screen layout for data-oriented design after the conceptual schema and design data have

been loaded. Up to this point, there is no difference in the operation of the two design

functions.
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Figure 90. Data-Oriented Design

Figure 91 shows the screen layout after the Update Data alternative is

selected from the menu window, top is selected, the Change data alternative is selected

from the menu window, and the name topl is entered. At this point the user wants to

change the tolerance of the dimensions to .35, so that value is entered in the status

window in response to the prompt shown there. Figure 92 shows the result of entering

that particular value - it is rejected. Note that when an exception occurs, the design

system will not permit the user to proceed until the exception has been removed. One

result of this mode of operation is that any design data which is saved has to have been

free of exceptions when it was created. It is still possible that when the design data is

used by the scheduling function exceptions will arise, but at least they will be minimized.

Each of the other exceptions noted in the execution of the process-oriented

prototype will displayed to the designer as the values of properties are entered. This, in

effect, gives the designer access to all of the pertinent information about the production of

a product while it is being designed.
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b. Process Planning

The use of our low-level data-oriented approach allows the process

planning function to be integrated with the design function into a single activity, as was

discussed in Chapter VII. In our data-oriented prototype, this means that the process

planning data required for the scheduling function is output from the design process,

which we take to be the integration of design and process planning. As was shown in

Figure 89, process planning still has a separate database of information used to perform

process planning functions. However, this database is used by the product design

function.

c. Scheduling

The data-oriented approach allows the scheduling function to use the data

produced by the product design function directly. Figure 93 shows the initial scheduling

display created by the scheduling simulator. The time unit is shown in the upper right

corner of the screen. The check-in station shows one rectangle for each process plan to

be scheduled. Each machine resource has one input and one output queue for each

process plan to be scheduled, and the number of resources of a given type are represented

by squares next to the machine name. In the original implementation, color is used to

distinguish the different process plans being scheduled. Every movement of material and

machine operation for a particular process plan can be monitored by watching the various

queues and machine resources for the color of the desired process plan.

Figure 94 shows the screen display during the scheduling process at time

unit 20. Each series of five square dots represents transportation resources being used.

Again, in the original prototype, these dots are colored to correspond to the process plan

utilizing the transportation resource. The same is true for the solid rectangle shown inside

a machine resource square. The solid rectangle is colored so that the viewer can tell

which process plan is utilizing a particular machine resource.
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Figure 93. Initial Scheduling Display
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Figure 94. Scheduling Display at Time Unit 20
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Figure 95 shows the scheduling screen display at the completion of time

unit 42. Note that several input queues at the assembly stations and welding machines are

full, but no work is being done by the resources there. This happens when all of the

materials for a particular operation are not physically in the same place. For example, the

welding of legs to the table tops cannot begin until all of the legs have been cut and

transported to the welding machines, where the tops are waiting. At the same time, the

legs which are to be attached by brackets to the table top are waiting at the assembly

station for the welding to be completed. Figure 96 shows the scheduling screen display at

the completion of the scheduling run.
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Figure 95. Scheduling Display at Time Unit 42
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Figure 96. Display at Completion of Scheduling
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4. Summary

The prototypes we have implemented point out the advantages of using the

data-oriented approach. Using our example metal table and the process-oriented

approach, the design data was translated three times by one translator, run through the

process planning system three times, translated by the second translator twice, and

processed by the scheduling system twice. The data-oriented approach avoided all of the

translation and the repetitive process planning and scheduling effort by making data

available where it was needed.
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VIII. CONCLUSION

A. SUMMARY

It is clear that manufacturing companies need to react to changes much faster and in

a more flexible way than in the past due to increasing worldwide competition, decreasing

market shares, and shortage of qualified industrial and manufacturing engineers.

Businesses are becoming increasingly complex due to the exponential growth rate of the

technologies supporting them. How can the information flow, design, and manufacturing

processes of such businesses be optimized, while maintaining marketplace presence,

increasing productivity, and decreasing production costs? There is no perfect sohlifon in

terms of automation alone. Computer Integrated Manufacturing provides a short and

long-term approach to a solution. The major problems to be solved are all related to

integration and to providing for the possibility of further developments in technology.

Those integration problems will be more easily solved when powerful computers are

linked with the machinery on the shop-floor and with the factory organization as a whole.

We have described and demonstrated our data-oriented approach to the integration

of manufacturing functions. Our data model, presented as a series of data abstraction

concepts, clearly captures the semantics of the manufacturing environment and provides a

common kernel around which those manufacturing functions can revolve. Our

data-oriented perspective allowed us to conceptualize, re-organize, and simplify the

product design and production process. The description of our low-level interface

approach demonstrated the reduction in complexity which results from the use of our

paradigm. In short, one of our major contributions is breaking the "mind set" of the

traditional process-oriented approach to integration.

The application of our approach will not be easy for manufacturing companies to

undertake. We expect that our perspective of the manufacturing process, if adopted, will

cause some initial turmoil as steps are taken toward integration. There will always be
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resistance to change and learning curves to deal with. The anticipation of impending

control itself will cause anxiety and concern among employees. However, the benefits to

be derived by making the change to our approach, which include better decision-making

ability as a result of better control over information, should outweigh the initial

investment Employees will be more productive and the use of other manufacturing

resources will be optimized because of the increased availability to relevant information

afforded by the use of our data model. Again, our contribution to manufacturing will be a

solution to the integration problem which makes these improvements a reality.

We have stated that the traditional database management systems lack the capability

of expressing the structural and relationship aspects of the objects which exist in the

manufacturing environment. Our solution was to identify the data requirements of

various manufacturing functions and then create a data model to support them. Simply

stated, our contribution to computer science in general and database systems in particular

is the solving of a complex problem using a novel data-oriented approach.

B. EPILOG

When we first considered doing research in semantic data modeling, we didn't have

any particular goal in mind other than a general goal of developing a database
management system capable of supporting advanced application areas such as office

automation, cartography, and CAD/CAM. We looked at the major semantic models

which were previously developed and noticed that most of those models were designed to

support specific application environments such as VLSI design. The abstraction concepts

they included were not easily applicable and in some cases the models themselves were

not easily extendible to increase their functionality. Our solution was to take parts of

various models to create a new model and then supplement that model with our own

abstraction concepts to increase its modeling power and therefore, its applicability.

We then considered the advanced application areas to which the model would be

applied and decided on CAD/CAM. We choose house construction as the example for

the application of our model since we could relate to it more readily than to other
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industrial manufacturing examples. Our concept was to develop a user interface which

could be used to "walk" a perspective home buyer through a model house. The user

would see the features of the house just as if he were actually there. The placement of

fixtures, doors windows, walls, and wiring, plumbing, and heating runs, etc., could be

displayed at different levels of detail, according to the user's level of interest. The idea
was to have a complete prototype of the house displayable on a high-resolution graphics

screen before construction actually began. The house would have been previously

designed using our proposed data model to specify and relate the various components
involved. We agreed that our concept was nice and desirable, but was not a significant

research problem.

During this initial stage of our research we also considered using a formal language

approach to the problem of internal representation of design objects. The terminal

symbols of the language would correspond to the primitive design elements of the

construction environment, e.g., boards, nails, etc. The nonterminals would represent

subassemblies of those primitive components and the grammar rules would specify the

restrictions on the use of primitives and sub-assemblies in producing higher order

complex objects. The language itself could be a context-free or modified

context-sensitive language. This idea was put on the back burner since it was more

implementation oriented than we wanted to deal with at the time. It is still on the back
burner and will be pursued by the author as a follow-on to this thesis research.

It occurred to us that what we lacked was an overall project showing our direction,

which we could chip away at, one piece at a time. We had noticed this characteristic in

most of the work being presented at conferences -- they were reporting on some small

aspect of research which was part of a much larger project. This led to the development

of our high-level approach to integration. We laid out a diagram of the major

manufacturing processes which make up CAD and CAM and decided to build a translator

between the two which would produce the bill-of-materials and operations sequence

information required for CAM using the data available from CAD. We decided to use a

rule-based system and subsequently wrote the translator in Prolog, using an expert system
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approach. We published our first conference paper shortly afterwards, describing our data

model and the translator we had developed.

Between the time when we wrote this paper and presented it at the conference, we

realized how impractical it would be to use the high-level approach in an actual setting.

We had already conceptualized a different approach. We researched the current literature

on database work in CIM and found that most attempts at integration were similar to our

high-level approach and therefore in the author's opinion, are doomed in the long run.

We saw from this research that a major problem was that the product life cycle itseif was

never changed when automation was introduced. People were viewing integration as a

machine replacement process where manual work was being automated but no

consideration was given to whether or not the work could have been done more

efficiently some other way. Our answer was the data-oriented approach which we now

call low-level integration.

We applied our data model to each of the major functions in the product life cycle,

looking for the commonalty among them. It was during this process that we discovered

the close relationship between product design and process planning. Our conclusion was

that the two previously separate activities could be combined into one and the product life

cycle was redefined.

The relevance of our work had been shown by the referee comments provided to us

in the submission of conference papers and by the continued acceptance of our work in

the engineering community. We applied our paradigm to the scheduling and shop floor

layout aspects of manufacturing,which we considered to be our last major hurdle. The

use of our approach had significantly reduced the complexity of the scheduling problem.

It was true that we could not produce an optimal schedule any more than anyone else

could, but what we could do was to show how better scheduling decisions could be made

using the information that is inherent in that environment. It became clear that our

approach had promise. Again, the relevance of our approach was shown when a reviewer

of our scheduling paper decided to use it for a concurrent programming project which he

had managerial responsibility for.
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C. DIRECTIONS FOR FUTURE WORK

In this kind of research one question seems to surface repeatedly. What next? The

real value in research is that it is never-ending. Every time one problem is solved, new

problems unfold. This is certainly true in our case. We will answer this question in two

parts. The first part will deal with implementation-oriented issues; those which will

eventually lead to a working system. The second will deal with research-oriented issues.

In Chapter VII, we demonstrated how our model handles the semantics of product

design. In that discussion we used figures which depict a generic user interface which

would manipulate our data model. The development of such a user interface is a

significant step in implementing an overall system. It would be useful in addressing some

of the research-oriented issues presented below. We will have to carefully consider the

question of how to develop an overall system which implements our paradigm. While we

have criticized the relational model for its lack of semantic expressiveness at the

conceptual level, it will probably be the most likely choice for the physical level model in

such a system.

There are two major research-oriented issues to address. The first is the extension of

our approach to other application environments. There are other manufacturing

technologies such as FMS to which our model could be applied. Even though FMS tries

to integrate manufacturing functions, it is still furthering the islands of automation

problem. There is a substantial investment in the FMS technology and we feel there may

be some short-term benefits to be realized in applying our model.

We feel our data model may be well-suited to other applications outside of

manufacturing as well. Since our model isn't tied to any particular representation of

objects, such as 3-D, it may be useful for modeling the multimedia and software

engineering environments. We believe these two applications have many of the same

semantics that we have seen in our research and therefore our model could be directly

applicable.

Our notions of version and version hierarchy could be especially useful in

supporting the software engineering environment. Software development is a key
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ingredient in that environmenL The program development and maintenance aspects of

software development involve making changes to programs to fix errors and increase

functionality. There is a requirement to maintain both the old, unmodified program and

the new program which has the changes incorporated. Our version abstraction concept

will model the program modification aspect while the history of modifications could be

modeled by our version hierarchy concept.

The aggregation abstraction concept is also useful for modeling certain aspects of

software engineering. Using a modular approach to program development, a program

itself can be viewed as an aggregation of the modules which perform the input, output,

and data manipulation operations. At a higher level of abstraction, software systems can

be modeled as aggregations of programs and subroutines. We are convinced that our

model is powerful and flexible enough to be used to support program development.

The second research-oriented issue deals with the various integration strategies

which can be used to implement our paradigm. We have stated that our low-level

approach is a long-term solution. In order to realize that solution, consideration will have

to be given to the proper interfacing of other systems and other research results.

Strategies will have to be adopted for transitioning from the islands of

automation/high-level integration if our long-term solution is to be successfully

implemented.
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APPENDIX A -TRANSLATOR PROGRAM

A. MAIN PROGRAM

start
not(begin-stdssheck),
not(beginopperations),
not(set..neg-area),
not(raw _materials-needed),
not(materials-report),
not(report-subst).

begin-stds-check: kind-of(Extens,Intens),
write('check for'),write(Intens),write(' '),write(Extens),nl,nl,
check(Extens,Intens),fail.

check(Extens,Intens) -
property(Extens,material-type,Material),
materia(Mater a,SpecMat,,,,,,-,)
commentjfor(Intens,SpecMat,Class),
comment(Class,Commnent),
write(' '),write(Comnient),ril,nI.

check(Extens,Intens).-
property(Extens,material-type,Material),

check-for(Ttens,Spec-Mat,Class),
member(Material,Class),

write(' meets requirements; allowed substitutes are:'),nl,nl,
member(OtherMat,Class),
not(Qther_-Mat = Material),
write(' - '),write(Other -Mat),nl,nl,
assertz(substitute(Extens,Other .Mat)).
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check(Extens,Lntens):
property(Extens,materialtyeMavia)
mater(Material,S ecW,- ,,,,,-,,J),
check_for(kntens,SpecMat,Class),
not(member(Material,Class)),
write(' '),write(Intens),write(' '),write(Extens),
wnite('does not meet requirements; allowed substitutes are:'),nl,nl,
member(Other-MatClass),
write(' - '),write(Other..Mat),nl,nI,
assez(substtute(Extens,Other-Mat)).

check(Extens,door) -
diniension(Extens,Dimension,Z,Units),
minimum(doorExtens,Dimension,X,Unitx),

maium(doorExtens,Dimension,Y,Unity),
convert(X,Unitx,Min,Units),
convert(YUnity,MaxUnits),
check-standards(door,Extens,Dimension,Z,Min,Max).

check(Extens,pane) -
property(Extens,quality,Value),
miniinum(paneExtens,qualityMin),

check-standards(pane,Extens,Value,Mfin).

check-standards(Intens,Extens,Dixnension,Value,Min,Max):
not(Min > Value), not(Value > Max),
write(' '),write(Lntens),write(' '),write(Extens),
write(' passed - '),write(Diniension),nl,nl,!.

check-standards(Intens,Extens,Dimension,Value,Min,Max)
Min > Value,
write(' '),write(Iinens),(' '),write(Extens),
write(' failed minimum -

write(Dimension),nlnl,I.

check-standards(Intens,Extens,Dimension,Value,Mfin,Max)
Value > Max,
write(' '),write(Intens),write(' '),write(Extens),
write(' failed maximum -

write(Dimension),nl,nl,!.
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check-standards(pane,Extens,Value,Min):
not(Min > Value),
write(' '),write('pane '),write(Extens),
write(' passed quality check'),nl,nl,!.

check--standards(pane,Extens,ValueMin):
Min > Value,
part-of(Extens,Window),
kindof(Window,window),
write(' '),write('pane '),write(Extens),
write(' failed minimum quality check'),nl,
write(' - part of '),write(Window),nl,nl,!.

begin..pperations:
kind-of(H~house),
not(do _assembly(H)),
not(operations-jeport(H)),
fail.

do-assembly(H) :- assemble(L1,house),fail.

operations_eport(H)

nl,nl,

writeC* ),,
write(' Production Sequence Report for')
write(H),nl,nl,
prinLstyle(H),
write('* ),l

operation(Extens,Function,Attribute 1 ,Attribute2),
print-operation(Extens,Function,Attributel ,Attribute2),
fail.
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printopertion(comment,Comment,,...)
nl,

write('* ),,
write(' comment:
write(Comxnent),
nl,
write('* ),l

prinLoperation(ExtensAttribute 1 ,Attribute2,Attribute3):
write(Extens),
name(Extens,L 1),
length(L ,N 1),
tab(15 -N),
write(Attribute 1),
get..namejen( Attribute 1 ,N2),
tab(l 5 - N2),
write(Attribute2),
getnaneen(Attribute2,N3),
tab(17 -N3),
write(Attribute3),nl,!.

get-namejlen(Name,Len):
number(Name),
not(integer(Name)),
name(Name,LI),
length(L1 ,N1),
Len is (N I -4),!.

get-name-len(Name,Len) -
name(Name,L 1),
length(L1 ,Len),!.

printstyle(H) :
property(H,subtype,Hstyle),
write('- house style is )
write(Hstyle),nl,
write(' and consists of')
contains(H,L),
write(L),nl,!.

177



print ..style(H).

/* routines to calculate surface area of faces taken up by *
1* doors, windows, openings, and connections *
set-neg..area:

kind-.of(Extens,face),
setnegarea2(Extens,[],O,feet),fail.

set-negarea2(Face,L,Area,Units):
face(Extens,Face),
not(member(Extens,L)),
kind-of(Extens,window),
dimension(Extens,height,Ht,Htunits),
dixnension(Extens,width,Wd,Wdunits),
convert(Ht,Htunits,New-Ht,Units),
convert(Wd,Wdunits,New-Wd,Units),
New_-Area is (Area + (New-Ht * New...Wd)),
setneg-area2(Face,[ExtenslL],New-Area,Units),!.

set-neg-area2(Face,L,Area,Unirs):
face(Extens,Face),
not(member(Extens,L)),
kind.Lof(Extens,door),
diniension(Extens,height,Ht,Htunits),
dimension(Extens,width,Wd,Wdunits),
convert(Ht,Htunits,New-Ht,Units),
convert(Wd,Wdunits,New-Wd,Units),
NewArea is (Area + (New -Ht * NewWd)),
set-neg-area2(Face,[ExtenslL1,New_-rea,Units),!.

set-neg-area2(Face,L,Area,Units):
face(Extens,Face),
not(member(Extens,L)),
kind-of(Extens,connection),
geometry(Extensrectangle),
dimension(Extens,height,Ht,Htunits),
dimension(Extens,width,Wd,Wdunits),
convert(Ht,Htunits,New-Ht,Units),
convert(Wd,Wdunits,New-Wd,Units),
NewArea is (Area + (NewHt * New Wd)),
set-negarea2(Face,[ExtensIL],NewArea,Units),!.
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set neg~aea2(Face,L,Area,Units):
face(Extens,Face),
not(member(Extens,L)),
kindof(Extens,connection),
geometry(Extens,square),
dimension(Extens,height,Ht,Htunits),
convert(Ht,Htunits,New-Ht,Units),
New_Area is (Area + (NewHt * NewHt)),
sezjiegarea2(Face,[ExtenslLj,New-Area,Units),!.

set -neg..area2(Face,L,Area,Units):
face(ExtensFace),
not(member(Extens,L)),
kind--of(Extens,connection),
geometry(Extens,square),
dirnension(Extens,width,Wd,Wdunits),
convert(Wd,Wdunits,New-Wd,Units),
NewArea is (Area + (NewWd * NewWd)),
set-negarea2(Face,[ExtensL],New-Area,Units),!.

set-neg-area2(Face,L,Area,Units):
face(Extens,Face),
not(member(Extens,L)),
kind-of(Extens,connection),
georneti-y(Extens,circle),
dimension(Extens,radius,Rd,Rdunits),
convert(Rd,Rdunits,New-Rd,Units),
Pi is 3.14159,
NewArea is (Area + (Pi * NewRd * NewRd)),
set-negarea2(Face,[ExtensIL],New-Area,Units),!.

set...neg-area2(Face,L,Area,Units):
face(Extens,Face),
not(member(Extens,L)),
kind-of(Exteris,opening),
geometry(Extens,rectangle),
dimension(Extens,height,Ht,Htunits),
dimension(Extens,width,Wd,Wdunits),
convert(Ht,Htunits,New-Ht,Units),
convert(Wd,Wdunits,NewWd,Units),
NewArea is (Area + (New-Ht * New_ Wd)),
set-neg-area2(Face,[ExtenslL],New-Area,Units),!.
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set-negarea2(Face,L,Area,Units):
face(Extens,Face),
not(member(Extens,L)),
kind of(Extens,opening),
geometry(Extens,square),
dimension(Extens,height,Ht,Htunits),
convert(HtHtunits,New..Ht,Units),
NewArea is (Area + (New-Ht * New Ht)),
sec-neg-area2(Face,[ExtensL],New-Area,Units),!.

set.neg-area2(Face,L,Area,Units):
face(Extens,Face),
not(meinber(Extens,L)),
kind-of(Extens,opening),
geometry(Extens,square),
dimension(Extens,width,Wd,Wdunits),
convert(Wd,Wdunits,NewWd,Units),
NewArea is (Area + (New-Wd * NewWd)),
set neg-area2(Face,[ExtenslLl,New-Area,Units),!.

set~neg-area2(Face,L,AreaUnits):
face(Extens,Face),
not(member(Extens,L)),
kind-of(Extens,opening),
geometry(Extens,circle),
dimension(Extens,radius,Rd,Rdunits),
convert(Rd,Rdunits,New-Rd,Units),
Pi is 3.14159,
NewArea is (Area + (Pi * NewRd * New_-Rd)),
set-neg-area2(Face,[ExtenslL],NewAea,Units),!.

set-neg-area2(Face,L,Area,Units):
assertz(get-negarea(Face,Area,Units)).

get-area(Extens,Area,Units):
partof(Extens,Face),
dimrension(Extens,heigbt,Ht,Htunits),
dimension(Extens~width,Wd,Wdunits),
get-neg-.area(FaceNeg-Area,Units),
convert(Ht,Htunits,New-Ht,Units),
convert(Wd,Wdunits,New-Wd,Units),
Area is ((NewHt * New Wd) - Neg-Area),!.
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getarea(Extens,Area,Uflits):
part-of(Extens,Face),
dinmension(Face,heightHt,Htufits),
dixnension(Face,width,Wd,Wdunits),
get-negra(FacCNegAreaUnts),
convert(Ht,Htunits,New...Ht,Units),
convert(Wd,Wdunits,New).Vd,Units),
Area is ((NewHt * New2Nd) - Neg-Area),!.

get-area(Extens,Area,Units):
part~of(Extens,Face),
dimension(Face,height,Ht,Htunits),
dimension(Extens,width,Wd,Wdunits),
getneg-area(Face,Neg-Area,Units),
convert(Ht,Htunits,New -Ht,Units),
convert(Wd,Wdunits,New-Wd,Units),
Area is ((NewHt * New-Wd) - NegAr-ea),!.

get-area(Extens,Area,Units):
part-of(Extens,Face),
dimiension(Extens,height,-t,Htunits),
diniension(Face,width,Wd,Wdunits),
get-neg-area(Face,Neg-Area,Units),
convert(Ht,Htunits,NewHt, Units),
convert(Wd,Wdunits,New.Wd,Units),
Area is ((NewHt * NewWd) - Neg-Area),!.

materials-report:
assertz(mat - ost(O)),
zil,nI,nl,write(' Raw Materials Report'),nl,nl,
write(' Item Cost Units Required'),nl,nl,
material-list(Material,Num-Units,Item-Cost),
New-.Cost is floor(Itemn-ost),
print-mareport(MaterialNumUnits,NewCost),
update-matsost(New-Cost),fail.
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materialsjreport:
matcost(Total),nl,nl,

'writeC* ')n'
write(' Total material cost is $)
write(Total),nl,
write('* ',,

fail.

update-mat-cost(Item-Cost)
retract(matscost(Total)),
New_Total is (Total + Item.Cost),
assertz(mat..cost(Newj-otal)),!.

prinLmaLreport(MaterialNum-Units,Tot-Cost):
write(Material),
name(Material,L ),
length(L1,N1),
tab(17 -N1I),
write('$ '),write(TotCost),
name(TotLCost,L2),
length(L2,N2),
tab(1 5 -N2),
write(Num-Units),nl,nl,!.

report-subst
nl,nI,nl,
write(' Start Raw Materials Report (w/ substitute)'),
nl,nl,nl,fail.

report-subst -
substitte(Extens,Subst.Mat),
replace-data(Extens,Subst-Mat),
not(raw materials-needed),
not(materialsreport),
restorejlata,fail.

replace-ata(Extens,Subs..Mat):
retract(mat-costUj),
retract(material-listL-,.,_J),fail.
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replace-data(ExtensSubst-Mat):
retract(substitute(Extens,SubstLMat)),
retract(property(Extens,niaterial-type,Material)),

write('

write(' ')write(Extens),write(': substitute '),
write(Subst..Mat),write(' for '),write(Material),nl,
writeC* ),l

assertz~poperty(Extens,materialtype,Subst-Mat)),
assertz(temp(Extens~material-typeMaterial)),!.

restore-data :
retract(temp(Extens,materiaLtypeMaterial)),
retract(propery(Extens,materialtypej),
assertz(property(Extensmaterial-type,Material)),!.
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B. STANDARDS DATA

nminimuxn(door,doorl ,width,32,inches).
minimum(doordoorl ,height,6,feet).
maximum(door,doorl ,width,4,feet).

maximum(door,doorl ,height,7,feet).
minimum(door,,depth,2,inches).
maximurn(door,-.,depth,3,inches).

minimum(pane,,quality,3).

comment(masonry,'approved methods must be used for building masonry walls
when outside air temperature drops below 40 degrees farenheit').

comment~for(cover,brick,masonry).
comment-for(cover,concrete block,masonry).
comment-for(sub..cover,biick,masonry).
comment forsub-cover,concreteblock,masomry).

comment(framing,'grade marks must be clearly visible on all framing members for
inspection').

comment-for(fram,wood,framing).

checkj-or(subsovertar.4,aper,[tarpaperl,tar-paper2,tar-paper3]).
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C. ASSEMBLY RULES

/* start with information on face normals;~

assemble(HKhouse):
asscntz(operation(cornment,'norinal for each face listed',...j),
assertz(operation('FACE', 'X', 'Y','Z')),
assertz(operation('-'OPP99 )
kind-ofFace ,face),
normal X(Face,X),
norrnal-Y(Face,Y),
normal-Z(Face,Z),
assertz(operation(Face,X,YZ)).

1* start with frame *
assemble(H,house):

assertz(operation(comnient, 'erect foundation and frame',_3).

1* do foundation frame ~

assemble(H,house):
kinCof(Yface,face),
transpartof(Yface,H),
normalZ(Yface, 1),
contains(Yface,L),
member(Frame,L),
kind-offrare,frame),
property(Frame,material-type,Mtype),
assertz(operation(Franie,assemble,'materiaI type: ',Mtype)).

/* do frame perpendicular to ground *

assemble(H,house):
kind offYfaceface),
trans.partoffYface,H),
normal-..Y(Yface,O),
normalZ(Yface,O),
contains(Yface,L),
member(Frame,L),
kin&.of(frame~fAme),
property(Framematerialtype,Mtype),
assertz(operation(Frame,assemble,'materia type: ',Mtype)).
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assemnble(H,housc):
kdic-offYface,face),
trans...partof(Yface,fI),
norma&X(Yface,O),
normalZ(Yface,O),
contains(Yface,L),

P 2ber(Frame,L),
kdic-of(Framejkfrne),
propertymrme~mateialtype,Mype),
arscrtz(operation(Frameassemble,'material type: ',Mtype)).

1* ceiling frame *
assemble(H,house):

kcind-OfYfaceface),
trans-.partof(Yface,1ID,
normnalZ(Yface,- 1),
contains(Yface,L),
member(Frame,L),
kind-of(Franerne),
property(Frame,material-type,Mtype),
assertz(operation(Frame,assemble,'materiaI type: ',Mtype)).

1* roof fr~ame */
assemble(H,house):

kind-of(Roof,roof),
trans-partof(Roof,H),
ktindj-fface,face),
trans-partof(Yface,Roof),
containsfYface,L),
member(Frame,L),
kindc-of(Frarne,frarne),
property(Frame~material-type,Mtype),
assertz(operation(Frame,assemble,'material type: ',Mtype)).

* now put doors in place *
assemble(H,house):

assertz(operation(commcnt,'put door framing in place',.J).
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assemble(H,house):
kind-of(Doordoor),
trans...partof(Door,
property(Door,materiaLtype,Mtype),
assertz(operation(Door,assemble,'materiaI type: ',Mtype)),
getjaces(DoorFacel ,Face2),
assertz(operationC' ,' - attach to:',FacelFace2)),
part-of(Door,Face3),
assertz(operation( ','- location','relative to',Face3)),
coordinatesX~local,DoorX,Units-X),
coordinates_-Y(localDoor,Y,UnitsY),
coordinates_-Z(localDoor,ZUnitsZ),
assertz(operation(",' X coordinate',X,Units..X)),
assertz(operation(",' Y coordinate',Y,Units-Y)),
assertz(operation(",' Z coordinate',Z,Units-Z)).

/* put window sills in place *
assemble(H,house):

assertz(operation(cominent,'put window fradming in place',_j).

asserable(H,house):
indof(Wwindow),

trans..partof(W,H),
contains(W,L),
member(SWl,L),
kind-of(Sifl,sill),
assert(operation(Sill,assemble, 'window sill for: ',W)),
getjaces(WFacel1,Face2),
assertz(operation(' ,'- attach to: '%Facel ,Face2)),
part-of(W,Face3),
assertz(operation(' ,'- location','relative to',Face3)),
coordinatesXaoca,W,X,UnitsX),
coordinates_-Ylocal,W,Y,UnitsY),
coordinatesZ(local,WZ,UnitsZ),
assertz(operation(",' X coordinate',X,Units -X)),
assert(operation(",' Y coordinate' ,YUnits -Y)),
assertz(operation(",' Z coordinate',Z,Units-Z)).

1* put up exterior siding *
asseinble(Hhouse):

assertz(operation(commnent,'put up exterior siding,_)).
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assemble(H,house):
kind-of(E,exterior),
trans-partof(E,H),
contains(E,L),
assemble(L,face).

/* put up roof */
assemble(Hhouse):

assertz(operation(comxnent,'put up roof',j).

assemble(H,house):
kind-of(R,roof),
trans,-partof(R,H),
contains(R,L),
assemble(L,face).

/* put up faces for each room
assemble(H,house):

assertz(operation(comment,'put up faces for each room' ,,j).

assemble(H-house):
kind-of(R,oom),
trans-panof(R,H),
contins(R,L),
assemble(L,face).

/* put up windows *
assemble(H,house):

asserzz(operation(comment,'put windows in place',,j).

assemble(H,house):
kind~of(W,window),
trans-partof(W,H),
contains(W,L),
member(PL),
kind-of(P,pane),
meznber(C,L),
kind-of(C,case),
assertz(operation(W,'complete using',P,C)).

188



1* take care of finish on windows and doors *
assemblc(H,house):

assertz(opera-tion(comment,'put finish on windows and doors',,)).

asscrnble(H,house):

finish.

/* take care of door knobs and hinges *
assemble(H,house):

asscrtz(opcration(comxnent,'put on door knobs and hinges',.,j).

assemble(H,house):
kind-of(D,door),
trans-partof(D,H),
assemble(D,door).

/* take care of paint on faces *
asscnible(H,house):

assertz(operation(cornxent,'put final paint on faces',,j).

assemble(H,house):
kindof(R,roof).
transjparof(R,H),
contains(R,L),
paint-face(L).

assemble(H,house):
kin~of(E,exterior),
aws.partof(E,H),
contains(E,L),
paintfAce(L).

assemble(H,house):
kInd-of(R,mom),
transpartof(R,
contains(R,L),
paint-face(L).
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/* routines to put up sub -covers and covers for a given ~

1* list of faces supplied as first argument; these routines ~
1* look for common materials to help set priority; all ~

I* sub -covers are handled prior to covers; *
/* covers which are paint are left to be performed at a
/* later time; all sub -covers and covers *
/* associated with the floor are performed last

assemble(Lface):
assemblelI (L,[],ace).

assemble(L,face):
mernber(Face,L),
norial-Z(Face, 1),
assertz(opcration(comment, 'build floor as last step',,j),
contains(Face,L ),
assemble2([LlJ,[L1 I]face).

assemble 1 (L,L 1 face):
member(Face,L),
not(normaUL(Face, 1)),
delete(Face,L,L2),
contains(Face,L3),
assemble 1 (L2,[L3 ILI ],face),!.

assemble 1 (L,L1 Iface) :
assemble2(L1 ,L I,face),!.

assemble2(FuILL,L,face):
niember(Face,L),
delete(Face,L,L 1),
member(Item,Face),
ind-ofItem,sub-cover),
propetltem,materal-ype,Mype),
operation(Y,,,Mype),
niember(Facel ,FuIIL),
member(Y Face 1),
assertz(operation(Item,assemble,'materiaI type: ',Mtype)),
delete(Itcm,Face,Face2),
assemble2(FuIIL,[Face2ILl],face),!.

10



assemble2(FuII-L,L,face):
member(FaceL),
delete(Face,L,L 1),
member(Item,Face),
kind~offltemn,subsover),
property(Itemmiaterial-type,Mtype),
assertz(operation(Item,assemble,'materiaI type: ',Mtype)),
delete(Item,Face,Face 1),
assemble2(FuIIL,[Face I LI ],face),!.

assemble2(FuIILL,L,face):
member(Face,L),
delete(Face,L,L 1),
member(Item,Face),
kindof(Item,cover),
property(Item,materialtype,Mtype),

operaionY,Mtype),
member(Facel1,FuIllL),
member(Y,Face 1),
assertz(operation(Item,assenible,'nateria type: ',Mtype)),
delete(Item,Face,Face2),
assemnble2(Fu1ll,[LFace2ll~l],face),!.

assemble2(FuIILL,L,face):
member(Face,L),
delete(Face,L,L 1),
member(Item,Face),
kindoffitemn,cover),
property(Item,material veMtp)

not(liquid(Mtype,paint,,,.,J),
assertz(operation(Item,assemble,'materiaI type: XMtype)),
delete(Item,Face,Face 1),
assemble2(FuW..L,IIFace 1 ILlI ,face),!.

assemble2(FuIIL,L,face).

/* take care of finishes *
finish:

pzopverty(F insh-type,Ftype),
property(F,finish..color,Fcolor),
assertz(operation(F,finish,Ftype,Fcolor)).
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1* assemble door knob *
assemble(Ddoor):

property(D,knobjtype,Ktype),
assertz(operation(D,assernble,knob,Ktype)).

1* assemble door hinges *
assemble(D,door):

property(D,hingejypc,Htype),
assertz(operation(D,assemble~hinge,Htype)).

I* routines to apply paint to faces; acts on covers only *

paint face(L) :
member(Face,L),
norrnal...Z(Face,- 1),
contains(Face,L ),
member(Cover,L ),
kind-of(Cover,cover),
property(Cover~material-type,Mtype),

assertz(operation(Cover,paint,'mate-iaI type: ',Mtype)),
delete(Face,L,L2),
paintjface(L2),!.

paintjface(L) -
member(Face,L),
normal-Y(Fac,O),
normal-Z(Face,O),
contains(Face,L ),
member(CoverL 1),
kind~of(Cover,cover),
property(Cover,material-type ,Mtype),

assertz(operation(Cover,paint 'materiaI type: ',Mtype)),
delete(Face,L,L2),
paint-face(2),!.
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paint-face(L)
member(Face,L),
normal.X(Face,O),
normaL-Z(Face,O),
contains(Face,L 1),
member(Cover,L 1),
kind-of(Cover,cover),
property(Cover,material type,Mtype),

assertz(operation(Cover,paint, 'material type: ',Mtype)),
delete(Face,L,L2),
paint-face(L2),!.

paint~face(L):
member(Face,L),
normalZ(Face,- 1),
contains(Face,L 1),
member(Cover,L 1),
kind-of(Cover,cover),
property(Cover,material type,Mtype),
liquid(Mtype,paint,.,L,,,)
assertz(operation(Cover,paint, 'material type: ',Mtype)),
delete(Face,L,L2),
paint.Jace(L2),!.

paintjface(L):
member(Face,L),
conzans(Face,L 1),
member(Cover,L 1),
kind-of(Cover,cover),
property(Cover,material-type,Mtype),
liquid(Mtype,paint,,,,_,
assertz(operation(Cover,paint, 'material type: ',Mtype)),
delete(Face,LL2),
paintface(L2),!.

paint-face(L).
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/* routine to get the two faces which an item is associated with ~

get.-acesqtem,FAcel ,Face2):
face(Itcm,Face 1),
face(Item,Fac2),
not(Face 1I Face2),!.

194



D. BILL OF MATERIALS RULES

1* materials for doors ~

raw-materialsjieneded:
kind_-of(Extens,door),

add_material(Extens,1 ,Cost),fail.

raw-materials-needed:
kcind-of(Extens,door),
property(Extens,finishjypePaint),
liquid(Pant,_,Area-CovAreajJnits,,Cost),
dimension(Extens,height,Org.HtjiL-Units),
dimension(Extens,width,OrgWd,Wdj~nits),
dimension(Extensdepth,Org-Dp,Dp.Units),
convert(OrgLHt,Ht-Units,New-Ht,AreajUnits),
convert(Org-WdWd-Units,New -WdArea-Units),
convert(Org-Dp,Dp-Umts,NewDp,Area-Units),
Area is(02 New Ht *New-Wd) +(2 *NewHt NewDp) +
(2 * New_-Wd * NewjDp)),
Nunijjnits is (Area / Area-Cov),
TotCost is (Num_.Units * Cost),
addjnateral(PainNum-Units,Tot-Cost),fail.

/* materials for windows *
raw-materials -needed:

kind-of(Extens,window),
materialExtens,,,,,,,,_Cos),
add-material(Extens, 1,Cost),fa.
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raw-materials-needed:
kidtof(Window,window),
part-of(Extens,Window),
kind.of(Extens,sill),
property(Extens,finishjype,Paint),
liquid(Painta..CovAeaUnits,,,Cost),
convert(Area-Cov,Area.Units,New-Area,feet),
New_-Are2 is ((New-Arca *NewArea) / Area.Cov),
diension(Window,heigbt,Org.Yt,Ht-Units),
dimension(Window,width,Org&.Wd,Wd-Units),
parL-of(Window,Face),
dimension(Face,depth,OrgDp,Dpj Units),
convet(rg-Ht,Ht-U mts,NewLHt,Area.Units),
convet(OgWdWdUnits,NewWdAeaUnts),
convert(Or-Dp,Dp-Units,NewDp,Area-Units),
Area is ((2 * NewHt * NewJDp) + (2 * NewWd * NewjDp)),
NumUnits is (Area / AreaCoy),
ToLCost is (Num_.Units * Cost),
add-material(PaintNumjinits,ToLCost),fail.

/* materials for frames; assumes 1 square foot of area
1* requires a 1 foot length of frame wood
raw-materials-needed.

ind-of(Extens,ftrne),
dimension(Extens,height,Height,HtUnits),
diniension(Extens,width,Width,WdUnits),
convert(HeightHi.Units,New-Height,feet),
convert(Width,WdUnits,New-Widthfeet),
property(Extens,materiabtype,Material),
material(Material,wood,Ht,Htuits,Wd,Wdunits,Dp,Dpunits,,,_,,Cost),
longest-diiension(Ht,Htunits,Wd,Wdunits,Dp,Dpunits,Len,Lenunits),
convert(Len,LenunitsNewj..en,feet),
Area is (NewHeight * NewWidth),
Num_Units is (Area / New-Len),
TotCost is (Nuni...Units * Cost),
add-material(Material,Numjinits,Tot-Cost),fail.
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raw-materials -needed :,
indof(Extens,fiwrn),

not(dimension(Extens,width,-.J),
not(dimension(Extensheight,J),
property(Extens,materiaLtypeMateiial),
material(Material,woodHtHmis,WdWdunits,Dp,Dpunits,,,,Cost),
get...ara(Extens,Area,Units),
convert(AreaUnitsNew..Are-aeet),
New_Area2 is ((New-Area *' NewArea) / Area),
longestdimension(Ht,Htunits,Wd,Wdunits,Dp,Dpunits,Len,Lenunits),
convert(en,LenunitsNew..Len,feet),
NuinUnits is (Area / Len),
TotCost is (NumxUnits * Cost),
add-mterial(Material,NuniUnits,Tot-Cost),fail.

raw-materials -needed:
normalZ(Face,- 1),
park-of(Extens,Face),
kind-of(Extens,fraxn),
property(Extens,materialtype,Material),
material(Material,wood,Ht,Htunits,Wd,Wdunits,Dp,Dpunits,,,,-,Cost),
longesL-dimension(Ht,Htunits,Wd,Wdunits,Dp,Dpunits,Len,Lenunits),
convert(Len,Lenunits,Newj..en,feet),
kind-of(Roof,roof),
part-offace2,Roof),
kind~of(Face2,face),
part-of(Extens2,Face2),
kin~of(Extensfrne),
normal-Z(Face2,CosZ),
dimension(Extens2,height,Ht-face,Ht face _units),
convert(Htjface,Ht-face- unts,NewHt-face,feet),
dimension(Extens2,width,Wd face,Wd-face _units),
convert(Wdjface,Wdjfaceunits,NewWd~face,feet),
SinZ is (sqrt(1 - (CosZ * CosZ))),
Area is (SinZ * New..HL-ace * New_Wdface),
Area2 is (SinZ * NewH_face * CosZ * NewHtface *2),

TotArea is Area + Area2,
Num-_Units is (ToLArea /New-Len),
TotCost is (Nurn-Units *Cost),

add_mzerial(Material,Num..Unizs,ToLCost),fail.
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raw-mterials-needed:
normaLZ(Face,-1),
partof(Extens,Facc),
kindof(Extens,fire),
property(ExtensmateriaLypeMaterial),
material(MatiooHtHWdWd uDpDp,Duflits~,-,Cost),
longest~imension(HtHtunsW,WduitsDp,Dpufits,Lefl,Leflufits),
convert(Len,Lenunits,New-jpen,feet),
kind-of(Roof,roof).
part-offace2,Roof),
inCof(Face2,f ace),

partof(Extens2,Face2),
kIndcof(Extens2,frane),
nornaL-Z(Face2,CosZ),
not(dixnension(Extens2,height,...J),
dimension(Face2,height,Ht-face,Ht-face-umits),
convert(Htjace,Htjacc units,New-Ht~face,feet),
dimension(Face2,width,Wdface,Wd~face_units),
convert(Wdjface,Wdjface-iinits,New Wdjface,feet),
SinZ is (sqrt(l - (CosZ * CosZ))),
Area is (SinZ * NewHt-face * NewWd~ace),
Area2 is (SinZ * NewHtuface * CosZ * NewWd-face),
TotArea is Area +Area2,
Num_.Units is (Tot.Area /New-Len),
TotLCost is (Num_-Units *Cost),

add-material(Material,NurnUnits,TotCost),fail.

/* frame material of type "filler" *
raw-materials-needed:

kind-of(Extensframne),
property(Extens,materia~type,Materia),
filler(Material,.,Vol,Volunits,,,Cost),
getarea(Extens,Area,Units),
convert(VolVolunits,New.3Tol,Units),
New_-Vol2 is ((New-Vol * NewVol * NewVol)/(Vol *Vol)),

dimension(Extens,depth,Dp,Dpunits),
convert(Dp,Dpunits,NewjDp,Units),
NurnUnits is (Area * Newj -p / New-'o12),
TotCost is (Num-Units * Cost),
add_material(Material,Num_Units,ToL-Cost),fail.
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raw...materials _needed:
kindof(Extens,sub-cover),
dimension(ExtensdepthThThunits),
piopety(Extens~material-typeMaterial),
mate terawW,HtHtunitsWd.Wdunits,Dppunit,,_Cost),
match(HtHnitsWdWdunitsDpDpunitsThTunits,ActLHt,Units 1 Act-Wd,Units2),
get-ara(ExtensArea,Units),
convert(ActLHtUnits 1 Actjit2,Units).
convert(ActCWd,Units2,AcLWd2,Units),
NuniUnits is (Area / (ActLHt * ActWd2)),
Tot-.Cost is (NurnUnits * Cost),
add-materiai(Mateial,Num-Unizs,ToL Cos),fail.

raw-matrials~needed:
kind-of(Extens,sub-cover),
not(diniension(Extens,depth,Th,Tunits)),
property(Extens,material-type,Material),
materialMateria,,HtHtunitsWdWduntsDpDpunits,-,,,Cost),
gecarea(Extens,Area,Units),
convert(HtHtunits,New-It,Units),
convert(Wd,Wdunits,New-Wd,Units),
Nurnijnits is (Area / (Newjit * New...Wd)),
Tot_Cost is (NumjjUnits * Cost),
add-mateia(Materi,NunUnits,To.Cost),fai.

raw_materialsjieeded:
kind~of(Extens,subscover),
property(Extens,materiaLtype,Paint),
liquid(Paint,,AreaCovAreajnits,.-,,Cost),
getarea(Extens,Area,Units),
conven(Area..Cov,AreaUnits,New-AreaUnits),tNew_-Area.2 is ((NewArea * New-Area) / Area_.Coy),
Num_-Units is (Area / New..Area.2),
TotCost is (NumUnits * Cost),
addjnater(Paint,NuiUnits,Tot.Cost),fail.



raw..mateialsjieeded:
ktind-of(Extens,cover),
dixnension(Extens,depth,Th,Thunits),
property(Extens,materiaLypeMaterial),
meiMatei ,HtWdsWduniDpDp,pwit,-,,,,Cost),
mnatch(HtHtunits,WdWdunitsDpDpunitsThThunits,AcL-Ht,Units 1 AcLWd,Units2),
get-area(Extens,AreaUnits),
convert(ActLHt,inches,AcLHt2,Units),
convert(Act...Wd,inches,AcL-Wd2,Units),
NumUnits is (Area / (Act_Ht2 * AcLW2)),
TotCost is (Num...Units * Cost),
add_material(Material,NumUnits,ToLCost),fail.

raw-materialsneeded:
kindof(Extens,cover),
not(dimension(Extens,depth,Th,Thunits)),
property(Extens,materiaLtype,Material),
materia(Materal,,Ht,Htunits,Wd,Wdunits,Dp,Dpunits,,,-.,-Cost),
gecarea(Extens,Area,Units),
convert(Ht,Htunits,Newjit,Units),
convert(Wd,Wdunits,New..Wd,Units),
NumUnits is (Area / (NewHt *New-Nd)),
ToLCost is (Num_.Units * Cost),
add-material(Material,NumUnits,Tot-Cost),fail.

raw -materials -needed:
kin~of(Extens,cover),
property(Extens,materiaLtype,Paint),
liquid(Paint,rA=Cov,AreaUnits,,,Cost),
gecarea(Extens,AeaUnits),
convert(Area.Cov,Area-Units,New-rea,Units),
NewArea2 is ((New-Area * New...Area) / AreaLCov),
NurnUnits is (Area / New-Area2),
Tot-Cost is (Num_-Units *' Cost),
add_material(Paint,Nunt.Units,TotLCost),fail

add_mterial(Material,Num-Units,To..Cost):
retract(materiaLlist(Material,O1d-NumUnits,OI&-Cost)),
New_NumUnits is (OldNuniUnits + Nurn-Units),
NewCost is (OlcLCost + TotCost),
assertzmaterialist(Matenial,NewNumLUnits,New-Cost)),!.
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addtmaterial(Mateial,NuntLUnitsToL-Cost):

assz(matalist(Mazia,Nuxm Units,ToLCost)),!.

/* material data /

matcrial(sbinglel2,shingle, 12,inches,6,inches,O.25,inches,0,feet,Ofeet, 1.25).

material(tar..paper2,tar..paper,72,inches,240,inches,0.25,inches,O,feet,0,feet, 125.00).

material(tar-paperl ,tar-paper,72,inches,240,inches,0.25,inches,0,fcct,O,feet, 150.00).

material(tarpaper3,tar..paper,72,inches,240,inches,0.25,inches,0,feet,0,feet, 1 10.00).

material(sheath-paper24,shat...paper, 12,feet, I 00,feet,0. 1 Inches,0,feet,O,feet,75.65).

material(wood8,wood,144,inches,4inches,2,inches,0,feet,0,feet,8.25).

material(hard-wood9,hard-wood,4,inch,24,feet,.5,inch,O,feet0feet, 12.00).

material(hardboard32,hardboard,36,feet, I O,feet, Ijncbes,O,feetO,feet, 136.55).

niaterial~hardboard78,hardboard,36,feet,24,feet, 1 ,inch,0,feet,0,feet,289.00).

material(hardboard34,hardboard,24,feet, I 0,feet, 1 Inches,0,feet,0,feet,95.35).

/use brick 10x4x6 effective size *
material(brick88,brick, I0,inches,4,inches,6,inches, 0,feet,0,feet, 1. 15).

liquid(paint9,paint,900,feet,l1,gallon,8.00).

fiquid(painz2 I ,paint,700,feet, 1 ,gallon, 13.55).

liquid(paint 17,paint, 1 100,feet, 1 ,gallon,8.25).

/* 10 lb, per 2 cubic feet *
fller(concretel ,concrete,2,feet,10,lb,5.00).

material(doorl , ,.,fetet,16.00).

material(window 1 ,, ,,feet,,feet,30.50).
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E. DESIGN DATA

1* house data ~

kind-of(houselhouse).

property(house l,subrype,single-room).

contains(houseljlroofl,exteriorlromll).

1* exterior data *

kind_of(exteriorl ,exterior).

contains(exteriorl ,[face5,face6,face7,face8]).

part-of(exteriorl ,housc 1).

/* roof data /

kind~of(roofl,root).

contains(roof 1 ,[face I 1 ,face 121).

part-of(roofl ,house 1).
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kind.of(face I1,face).

dimension(facel 1 ,height,15 1.5,inches).
dimension(facc 1 ,width,384,inches).
dimcnsion(facl 1 l,depth,6.5,inches).

contains(face 1,[fr-amel ,subsover2,sub-coverl,coverl I).
normaLX(face 1,0).
normaLY(face 11,0.34).
normaLZ(face 11,0.94).
part-offacel 1 lrof 1).

/*-----------------------------------

kind-of(frame1,frame).

propertY(frame 1 ,material-type,wood8).

dimension(fr-ame I height, I 39.5,inches).
dimension(frainel1,width,382,inches).
dimension(fr-anel1,depth,4,inches).

face(fraiel I,face 11).

part-of(frame1,face 11).

/*------------------------.............

kin of (sub-cover2,sub _cover).

property(sub...cover2,mateiatype,wood8).

diniension(sufr.-cover2,depth,2,inches).

park-of(subs-over2,facel 11).

/*------------------------.............
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kindof(sub-coverl1,sub-cover).

property(sub-cover1 ,material-type,tar..paper2).

dimension(sub-coverl ,depth,O.25,inches).

part~of(sub.covCe 1face 1 1).

/*-----------------------..............

kIndopf(coverl ,cover).

property(coverl ,materiaLtype,shingle 12).
property(coverl ,finish-color,brown).

dimension(coverl ,depth,O.25,inches).

part...of(coverl ,face 11).

kincdof (face 12,face).

dimension(facel2,height,15 1.5inches).
dimension(face 12,width,384,inches).
dimension(facc 12,depth,6.5,inches).

contains(face 12,[franie2,subsoverl 3,subscoverl4,coverl 2]).
normal_X(facel2,O).
normal_Y(facel12,-O.34).
normalZ(facel2,O.94).
part~of(facel 2,rof 1).

/*------------------------.............
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kind--offramc2,frae).

property(frame2,inaterial-type,wood8).

dimension(fraxne2,height, 139.5,inches).
dimension(fmane2,width,382,inches).
dimension(franie2,depth,4,inches).

face(frame2,acel2.

part...of(frae2facel 2).

/*-----------------------..............

kind-of(sub-overl 3,sub-cover).

property(sub-coverl 3,materialtype,wood8).

dimension(sub-coverl 3,depth,2,inches).

part...of(subscoverl 3,facel 2).

/*------------------------.............

kind~of(sub -coverlI4,subs-over).

property(sub-coverl4,material-type,tar-paper2).

dimension(sub-coverl 4,depth,O.25,inches).

parLof(subs-overM4,f ace 12).

/* ..... ... .... ... .... ... .... ... .... ...
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kdnd of (coverl2,cover).

propertY(coverl2,rmteriaLtype,shinglel 2).
property(coverl 2,finish~color,brown).

dimension(coverl2,depth,O.25inches).

part-of(cover 12,face 12).

1* roomi *

kind-pf(rooml ,room).

coordinates.X(product~roml ,0,inches).
coordinates-Y(product,rooml ,0,inches).
coordinatesj(product,rooml ,1 2,inches).
contains(rooml ,[facel ,face2,face3,face4,face9,face 10]).
part-of(room I house 1).

1* facel *

indof(facel ,face).

dimension(f ace 1 ,beight, I 1 5,inches).
dimension(facel ,width,362,incbcs).
dimension(facc 1,depth,l1,inches).

contains(facelI,[sub-over3,cover2]).
normal_X(facel,0).
normalY(face1,-1).
normalj(facel,0).
part--of(facel ,room 1).

I..-- .................................
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kndof(subcover3,sub-cmver),

propety(subCOVer3,matela1wharr
32 )-

dimensiofl(subSover
3 ldepthl ,nches).

part of(sub-pover3,facel).

ind of(cover2,cover).

propety(covr2,filish-oorYe~lOw)-

part of(cover2,facel).

1* face2 /

kind-offace2,face).

dimension(face2,heightAl I 5,inches).
dimension(face2,width,24 0 ,inches)-
diinension(face2,dePt'hA ,inches).

contains(face2,Esub-cOver4,cOver
3I)-

normal X(facc2,-l).
norma~y(f ace2,0)-
normal Z(f ace2,0).
part._p.f(face2,m 1).

1*-----------------------..............
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kindof(sub~cover4,subL-over).

property(subscover4,material-type,hardboard34).

dimension(subs-over4,depth,l1,inches).

part oftsub~cover4,face2).

/*-----------------------------------

kin&.of(cover3,cover).

property(cover3,material-typepaint9).
property(cover3,finishscolor,yellow).

part-of(cover3,face2).

1* face3 *

kind ..of(face3,face).

dimension (face3 ,height, I15,inches).
diniension(face3,width,362,inches).
dimension(face3,depth,1 ,inches).

contains(face3,[sub-cover5,cover4D).
norinailX(face3,O).
nornialY(face3, 1).
normal.Z(face3,O).
partof(face3,room 1).

/----------------------------*
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kindof(subs-over5,sub-over).

property(subsover5,material-type,hardboard32)-

dimension(sub-cover5,depth, 1 ,inches).

part...ffsubsover5,face3).

kind..of(cover4,cover).

property(cover4,material-typcepaint9).
property(cover4,finish-color~yelow).

part..of(cover4,face3).

1* face4 *

kInd~of(face4,face).

dimension(face4,height,1 15,inches).
dimension(face4,widtb,240,inches).
dimension (face4,depth, I ,inches).

contains(face4,[sub-cover6,cover5j).
normalXface4j).
normal Y(face4,O).
normalZ(face4,O).
partofface4,rooml).

/*------------------------.............
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kind-of(subs-over6,sub--sover).

property(sub-ovr6,mateialtype,hardboard34).

dimension(sub covcr6,depth, 1 inches).

pazt~of(sub..covcr6,face4).

/*-----------------------------------

kInd jof(coved5,cover).

property(cover5,material-typepaint9).
property(cover5,finish-coloryellow).

part...of(cover5,face4).

/* faceS *

/use brick l0x4x6 effective size /

kind-offace5,face).

dimension(face5,beight,1 20,inches).
dinension(face5,width,382,inches).
dimension(face5,depth,6,inches).

contains(face5,[fr-ame3,sub-cover7,cover6]).
normal-X(face5,O).
normal..Y(face5, I).
normaLZ(face5,O).
part-of(face5,exteriorl).

1* ----------------------------------
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kind-of(frane3,fAie).

property(frame3,materiaLtype,wood8).

dimension(frame3,depth,4,inches).

face(frame3,face5).
face(frame3,face 1).

pait-of(frame3,face5).

kInd-of(sub-over7,suk-cover).

Property(sub -cover7,material-type,sheath-paper24).

Pazt~of(sub-cover7,ace5).

/*------------------------.............

kind-of(cover6,cover).

ProPernY(cover6,material-type,brick88).
PropernY(COver6,fnisW..color,red).

dinicnsion(cover6,depth,6,incbes).

Part-of(cover6,face5).
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1* face6 *

kind.of(face6,face).

dimcnsion(face6,height,120,inches).
dimension(face6,width,250,inches).
dimension(face6,depth,6,inches).

contains(face6,[fr-ame4,sub -cover8,cover7,window 1]).
normaLX(facc6, ).
normaLY(face6,O).
normaLZ(face6,O).
parLofface6,cxteriorl).

/* ----------------------------------

kincdof(frame4,fame).

property(frame4,niaterial-type,wood8).

dimension(frame4,depth,4,inches).

face(franie4,face6).
fac(ftame4,face2).

parL-of(frame4,face6).

I.-----------------------------------

kindof(sub..cover8 ,sub -cover).

Property(subcover8,niateriaLjype,sheath-paper24).

parLoffsub-cover8,face6).

I..-- .......................... .......
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indof(cover7,cover).

property(cover7,niaterialtype,brick88).
property(cover7,finish-colormrd).

dimension(cover7,depth,6,inches).

part-of(cover7,face6).

I. ---- -- ---- -- --- ---- --- -- -

kind-of(windowl ,window).

dimension(windowl1,height,36,inches).
dinmension(windowl1,width,48,incbes).
diniension(windowlI,depth,O.5,inches).

contains(windowl ,[panel ,silI 1,case 1]).
face(windowl ,face2).
face(windowl ,face6).
coordinates_.Xlocal,windowl ,96,inches).
coordinatesY(local,windowl1,Ojinches).
coordinatesZ(local,windowl ,66,inches).
parL-of(windowl1,face6).

/*------------------------.............

kindof(panelpane).

property(panel1,quality,4).

part-of(panel ,window 1).

I..-- .................................

213



ind_of(silll1,sil).

property(sW~ 1 ,flnish ryepit1)

property(sill,finish-color,wbite).

pmrtof(sill,window 1).

/*. ... ..... ..... .... ..... ...

kind~of(cascl ,case).

part-of(casel ,window 1).

1* face7 *

kind-of(face7,face).

dimension(face7,height, 120,inches).
dimension(face7,width,382,inches).
dimension(face7,depth,6,inches).

contains(face7,[fraxne5,subcover9,cover8,door1]).
normal-X(face7,O).
normal-Y(face7,- 1).
normal-Z(face7,O).
part...fface7,exteriorl).

------------...*t.................

kind-of(frame5,fiaxn).

property(fnme5,material-typ,wood8).

dimension(frame5,depth,4,inches).

face(frame5,face7).
face(frame5,face3).

part-of(fralne5,face7).
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kin~of(subscovci9,sub-over).

PropcrtY(sub covcr9,materialtype,sbeathpaper24).

part-of(sub-ovr9,face7).

kind~of(cover8,cover).

ProPerty(cover8,materialjype,brick88).

PrOPertY(cOver8,finish-color,rcd).

dirnension(cover8,deptb,6,inches).

pan-of(cover8,ace7).

I..-- .................................

kinCof(doorl ,door).

property(doorl matenia~jype,wood5).
PropertY(dOorl ,finish-type,paint2 1).
ProPertY(doorl ,finish-color,brown).
PropertY(dOOrl ,kobj-ype,round32).
ProPertY(doorl ,iingej-ype,square3in).

diniension(doorl ,heigbt,84,inches).
dimension(doorl ,widtb,36,inches).
diniension(doorl ,depth,2.5,inches).

face(doorl ,face3).
face(doorl face7).
coordinates -Xoocal,doorl , 125,inches).
coordinates...Y~ocal,doorl ,O,inches).
Coordinates..Z(local,doorl ,42,inches).
part-of(doorl face7).
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1* faceS *

kin&..offace8,ace).

dimension(face8,height,12O,incbes).
dimension(face8,width,250,inches).
dimension(face8,depth,6,inches).

contains(face8,[famne6,sub _coverlO,cover9]).
normal X(face8i- 1).
normaL..Y(face8,O).
normal-Z(face8,O).
pan-..of(faceSgexteriorl).

/* .. ........ ........ .......

kiix-of(frame6,fAme).

propery(frame6,material-ype,wood8).

dimension(frame6,depth,4,inches).

face(frame6,face8).

face(frame6,face4).

part...of(frame6,face8).

/*------------------------.............

kindof(subs-overlO,subs-over).

property(sub-soverlO,material-type,sheath-paper24).

pait-of(subs-overlOface8).

I..-- .................................
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kind-of(cover9,cover).

property(cover9,matezial-type,brick88).

property(cover9,flnish-color,r).

part~of(cover9,face8).

1* face9 *

ldn&.-of(face9,face).

dimension(face9,height,20,feet).
dimension(face9,width,30,feet).
dimension(face9,depth,1 ,inches).

contains(face9,[fiame7,sub -coverI 1,coverlO]).
normal-X(face9,O).
normaLjY(face9,O).
normaL..Z(face9,-1).
pan~of(face9,rom 1).

/0 ..... ... .... ... .... ... .... ... .... ...

kInd~of(frame7,fraxne).

property(frame7,materialtype,wood8).

face(frame7,face9).

part-of(frame7,face9).

/*------------------------.............
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kind-of(sub-coverl 1,sub-cover).

property(sub..coverl 1 ,material-ypehardboard78).

dimension(sub-coverl 1 ,depth, 1 ,inches).

part-of(sub-coverl 1 ,face9).

kind~of(coverlO,cover).

property(coverlO,inateriaLjyp,paint 17).
property(coverlO,finish-color,white).

part-.of(coverlO,face9).

/* facelO *

kind~of(facelO,face).

dimension(facelO,height,382,inches).
dimension(facelO,width,262,inches).
dimension(facelO,depth,1I2.5,mches).

contains(face 1O,[fame8,sub-coverl2,coverl 1]).
norial-X(f ace 10,0).
normal-Y(face 10,0).
normal j.(face 10,1).
part-of(facelO,roonil).

1* ..... ... .... ....... ... .... ... ...... 1
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kInd-of(frame8,franie).

Propery(farm8,materia1pecnetei).

dimension(franie8,depth, 12,inches).

face(fraine8,facclO).

part-of(ftame8,face 10).

kind-of(sub...covr2,subcovr).

ProPetY(subcover2,mateltp,hrd-woo
9 ).

dimension(sub...cover2,hcight2ofet).
dimension(subcoverl 2,width,3O,feet).
dimension(sub-coverl2depth,05,iches)-

Part-of(sub-cover 2 face 10).

kinClof(coverl 1 ,cover).

Property(covcrl 1 ,naterial-typepaint2 1).
PropertY(coverl 1,finish-color brown).
dimension(coverl 1 ,height,20,feet),
dimension(coverl I ,width,30,feet).

part of(coverl 1 face 10).
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F. SCHEMA DATA

parL-of(house,floorplan).
par~of(housceextexior).
part-of(houseiroom).
par~of(housejwof).
parL...f(house,space).

parL-of(roofface).

part-of(room,face).

parL-of(space,face).

part-of(exterior,face).

part-of(face,door).
Part-of(face,window).
part-of(face,opening).
pan-of(face,covering).
parLofface,sObcovering).
part-of(face,fraxne).
pan-of(facc,insulation).
pam-oftfacc,connecfion).

part-of(connection,plumbing).
part-of(connection,electric).
part-of(connection,heating).
part-of(connection,gas).

partof(window,sill).
part-of(window,case).
part-of(window,pane).

tras-partof(X,Y) :-part-of(X,Y),.
trans-partof(X,Y): par...of(XZ),

transLpartof(Z,Y),!.
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G. CONVERSION RULES

convemz(A,feetB,feet) :-B = A.
converts(A,inches,B,inches) :-B = A.
converts(A,feet,B,inches) B = A *12.

converts(A,inches,B,feet) B = A /12.
converts(A,feet,B,yards) B = A /3.
converts(A,yardsBfeet) B = A *3.

convert(ADimensionl1,B,Dimension2):
converts(A,Dirncnsionl ,BDimension2),!.

convert(A,Dimensionl ,B,Dimension2) -
converts(A,Dimensionl1,X,Dimensionx),
not(equal(Dimensionl1,Dimnensionx)),
convert(X,Dimensionx,B,Dimension2).
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H. MISCELLANEOUS ROUTINES

1* find longest dimension of three passed in *

longestlimension(tHtunits,WdWdunits,Dp,Dpunits,Len,Htunits):
convert(Wd,Wdunits,New-Wd,Htunits),
convert(Dp,Dpunits,New-Dp,Htunits),
maxmum(ewHt,NewWd,Max),

maxium(Max,New-Dp,Len),!.

maximum(A,B,A):
A >B,!.

maximum(A,B,B).

/* have match if within .25 inches ~

match(A,A.Units,B,BUnits,C,CUnits,D,DUnits,A,AjiUnits,B,Bjjnits):
convert(A,A-Units,New-A,incbes),
convert(B,BUnits,New-B,inches),
convert(C,Cj.Jnits,New-C,inches),
convert(D,D-Units,NewD,inches),
((New-D - New-.C) < 0.25),
((NewD - New.C) > - 0.25),!.

match(A,AUnits,B,BUnits,C,C-Units,D,D Units,A,A-Units,C,C Units):
convert(A,A-Units,New -A,inches),
convert(B,B..Units,NewB,inches),
convert(C,CUnits,New-C,inches),
convern(D,D-Units,New-D,inches),
((New-D - NewB) < 0.25),
((NewD - New..B) > - 0.25),!.

match(A,AUn,B,B-Units,C,C-Unts,D,DUnits,B,BUnits,C,C-Units):
convert(A,A-Units,New..A,inches),
convert(B,B&Units,New..B,inches),
convert(C,C...Units,New-C,inches),
convert(D,DUnits,New-D,inches),
((New-D - New-A) < 0.25),
((New...D - New-A) > - 0.25),!.

match(A,AUnits,B,BUnits,C,C...Units,D,DUnits,A,A-Units,B,B-Units):
nl,write('Error! No match found during raw material calculations.'),fail.
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1* routine to get member of list ~
member(X,[XIL]).
member(X,[YIL]): meniber(XL).

1* routine to delete member of list *
delete(X,fl,fl).
delete(X,[XILIL) :-!.
deletc(X,CYILJ,[YIMJ): delete(X,L,M).

equal(A,B): B A.
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APPENDIX B - SAMPLE TRANSLATOR EXECUTION

% prolog

C-Prolog version 1.5

1 ?- [man].

assembly reconsulted 9104 bytes 2.01667 sec.
conversion reconsulted 724 bytes 0.183334 sec.
interface reconsulted 12128 bytes 2.6 sec.
schema reconsulted 1008 bytes 0.266667 sec.
standards reconsulted 680 bytes 0.2 sec.
housel reconsulted 11956 bytes 3.68333 sec.
routines reconsulted 1736 bytes 0.416674 sec.
materials reconsulted 8584 bytes 2.36667 sec.
main consulted 45920 bytes 11.95 sec.

yes

I ?- start.

check for house house 1

check for exterior exteriorl

check for roof roof 1

check for face facel 1

check for frame framel
grade marks must be clearly visible on all framing members for inspection

check for subcover subcover2
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check for subcover subcoverl
sub-cover sub cover meets requirements; allowed substitutes are:
- tar,.paperl
- tar-paper3

check for cover coverl

check for face face 12

check for frame frame2
grade marks must be clearly visible on all framing
members for inspection

check for sub_cover sub_cover 13

check for sub-cover sub-coverl4
sub-cover sub._cover14 meets requirements; allowed substitutes are:
- tar-paperl
- tarpaper3

check for cover coverl 2

check for room room 1

check for face face 1

check for subcover sub cover3

check for cover cover2

check for face face2

check for sub_cover sub_cover4

check for cover cover3

check for face face3

check for sub_cover sub_cover5

check for cover cover4
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check for face face4

check for subcover sub cover6

check for cover cover5

check for face face5

check for frame frame3
grade marks must be clearly visible on all framing
members for inspection

check for subscover sub_cover7

check for cover cover6
approved methods must be used for building masonry walls
when outside air temperature drops below 40 degrees farenheit

check for face face6

check for frame frame4
grade marks must be clearly visible on all framing
members for inspection

check for sub_cover subcover8

check for cover cover7
approved methods must be used for building masonry walls
when outside air temperature drops below 40 degrees farenheit

check for window window 1

check for pane panel

pane panel passed quality check

check for sill sillI

check for case casel

check for face face7
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check for frame frame5

grade marks must be clearly visible on all framing members for inspection

check for sub_cover sub_cover9

check for cover cover8
approved methods must be used for building masonry walls
when outside air temperature drops below 40 degrees farenheit

check for door doorl
door doorl passed - height
door doorl passed - width
door doorl passed - depth

check for face face8

check for frame frame6
grade marks must be clearly visible on all framing
members for inspection

check for subcover sub-coverlO

check for cover cover9
approved methods must be used for building masonry walls
when outside air temperature drops below 40 degrees farenheit

check for face face9

check for frame frame7
grade marks must be clearly visible on all framing members for inspection

check for sub_cover sub-coverl 1

check for cover cover 10

check for face facelO

check for frame frame8

check for sub_cover sub_cover 12

check for cover coverl I
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Production Sequence Report for house 1
- house style is singleroom
and consists of [roofl,exteriorl,rooml]

comment : normal for each face listed

FACE X Y Z

face11 0 0.34 0.94
facel2 0 -0.34 0.94
facel 0 -1 0
face2 -1 0 0
face3 0 1 0
face4 1 0 0
face5 0 1 0
face6 1 0 0
face7 0 -1 0
face8 -1 0 0
face9 0 0 -1
face 10 0 0 1

comment erect foundation and frame

frame8 assemble material type: concretel

frane4 assemble material type: wood8

frame6 assemble material type: wood8

frame3 assemble material type: wood8

frame5 assemble material type: wood8

frame7 assemble material type: wood8

framel assemble material type: wood8

frame2 assemble material type: wood8
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comment: put door framing in place

doorl assemble material type: woods

- attach to: face3 face7

- location relative to face7

X coordinate 125 inches

Y coordinate 0 inches

Z coordinate 42 inches

comment: put window framing in place

sill assemble window sill for: windowl

- attach to: face2 face6

- location relative to face6

X coordinate 96 inches

Y coordinate 0 inches

Z coordinate 66 inches
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comment : put up exterior siding

sub_coverlO assemble material type: sheath-paper24

subcover9 assemble material type: sheath-paper24

subcover8 assemble material type: sheath-paper24

sub-cover7 assemble material type: sheath._paper24

cover6 assemble material type: brick88

cover7 assemble material type: brick88

cover8 assemble material type: brick88

cover9 assemble material type: brick88

comment : put up roof

sub_coverl3 assemble material type: wood8

sub_cover2 assemble material type: wood8

sub_coverl assemble material type: tar-paper2

subcoverl4 assemble material type: tar_paper2

coverl2 assemble material type: shinglel2

coverl assemble material type: shinglel2
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comment put up faces for each room

sub_coverl assemble material type: hardboard78

sub_.cover6 assemble material type: hardboard34

subcover4 assemble material type: hardboard34

sub_cover5 assemble material type: hardboard32

sub_cover3 assemble material type: hardboard32

comment: build floor as last step

subcoverl2 assemble material type: hard_wood9

comment: put windows in place

window 1 complete using pane l case 1

comment : put finish on windows and doors

silli finish paintl7 white

doorl finish paint2l brown
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comment : put on door knobs and hinges

doorl assemble knob round32

doorl assemble hinge square3in

* ***** ** **** ****** ***** ** *** ***** ***** *

comment: put final paint on faces

coverlO paint material type: paint17

cover3 paint material type: paint9

coverd paint material type: paint9

cover2 paint material type: paint9

cover4 paint material type: paint9

coverll paint material type: paint21
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Raw Materials Report

Item Cost Units Required

doorl $16 1
window! $30 1
concretel $1737 347.514
wood8 $3582 434.194
tar..paper2 $841 6.73333
hardboard32 $211 1.54776
hardboard34 $147 1.54722
hardboard78 $200 0.694444
hardwood9 $900 75
sheath-paper24 $64 0.850277
shinglel2 $2020 1616
brick88 $4224 3673.2
paint9 $8 1.0317
paintl7 $4 0.551818
paint2l $12 0.923095

Total material cost is $13996
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Start Raw Materials Report (w/ substitute)

subcoverl: substitute tar-paperl for tar..paper2

Raw Materials Report

Item Cost Units Required

door1 $16 1
windowl $30 1
concretel $1737 347.514
tar paperl $504 3.36666
wood8 $3582 434.194
tar-paper2 $420 3.36666
hardboard32 $211 1,54776
hardboard34 $147 1.54722
hardboard78 $200 0.694444
hard-.wood9 $900 75
sheath-paper24 $64 0.850277
shinglel2 $2020 1616
brick88 $4224 3673.2
paint9 $8 1.0317
paintl7 $4 0.551818
paint2l $12 0.923095

Total material cost is $14079
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subcoverl: substitute tarpaper3 for tar-paper2

Raw Materials Report

Item Cost Units Required

doori $16 1
windowI $30 1
concretel $1737 347.514
tar-paper3 $370 3.36666
wood8 $3582 434.194
tar-paper2 $420 3.36666
hardboard32 $211 1.54776
hardboard34 $147 1.54722
hardboard78 $200 0.694444
hardwood9 $900 75
sheath-paper24 $64 0.850277
shinglel2 $2020 1616
brick88 $4224 3673.2
paint9 $8 1.0317
paintl7 $4 0.551818
paint2l $12 0.923095

Total material cost is $13945
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sub_coverl4: substitute tar-paperl for tar-paper2

Raw Materials Report

Item Cost Units Required

door1 $16 1
window1 $30 1
concretel $1737 347.514
tar.paper2 $420 3.36666
wood8 $3582 434.194
tarpaperl $504 3.36666
hardboard32 $211 1.54776
hardboard34 $147 1.54722
hardboard78 $200 0.694444
hardwood9 $900 75
sheath-paper24 $64 0.850277
shinglel2 $2020 1616
brick88 $4224 3673.2
paint9 $8 1.0317
paintl7 $4 0.551818
paint2l $12 0.923095

Total material cost is $14079
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***iw* ikii**kii** kkk*dl *k*I*k * * *** **** * * *

subcover 14: substitute tar paper3 for tar-paper2

Raw Materials Report

Item Cost Units Required

doorl $16 1
windowl $30 1
concretel $1737 347.514
tar-.paper2 $420 3.36666
wood8 $3582 434.194
tar-paper3 $370 3.36666
hardboard32 $211 1.54776
hardboard34 $147 1.54722
hardboard78 $200 0.694444
hardwood9 $900 75
sheath-paper24 $64 0.850277
shinglel2 $2020 1616
brick88 $4224 3673.2
paint9 $8 1.0317
paintl7 $4 0.551818
paint21 $12 0.923095

Total material cost is $13945

[Prolog execution halted]
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APPENDIX C - PROTOTYPE PROGRAM LISTINGS

A. PROCESS -ORIENTED PROTOTYPE LISTING

code = 4000
project 'sirnulat2"
domains

file = dat
1= symbol
n =integer

r =real

include "tdoms.pro"
include "gdoms.pro"

database
menuno(row)
schema(l,row,col,row,col,l)
schemajobject(ln,nn,n)

nunipops(l,n)
selected(l)
design(l,l,l)
kInd-ofo,l)
opened(l,l)
saved(l)

operation(l,l,l,l,l,l,,,l,n)
product(l,l,n)
clock(n)
ready(n,l,l,n,n,n,n)
waitng(n,,I,n,n)
waiting(n,l,l,l,n,n)
quantity(n)
workingo,n,n,nl,n,n)
Ieast(n,njl,l,n,n,n)
dline(n,n)
resoure(l,n,n,n)
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macbine-ypel,)
exception1,1l)
pp~jexcept(1,l)
schedjexcept(,l)

global Predicates

determ box(vrowvcolvrow,vcolcolorcolorfll) - (iiiiii)language c
/* (Row 1 ,Col I Row2,CoI2,UineColorFillColorFill)
Range for Rows: 0-31999
Range for Columns: 0-31999
Fill = 0 A box will be drawn with color LineColor

but not filled
I A box will be drawn with color LineColor
and filled with color LineColor*/

predicates
gwrite(row,col,string,colorinteger)
nondeterm, repeat
setEGApalette(integerlist)
puinlist(integerlist,integerinteger)
wfs(char)
wait(n)
set-pal
go
design-.phase
translatel
process-.planning
translate2
scheduling
getjnenu(n)
write-menuO,color)
menu(n,l)
getmouse..position(n,n)
action(n,n,njl)
highlight(row,color,l)
cololr-Of1,color)
draw-schema
highlightjypeW(color,l)
retract-others
retract...design
write..objectsQ,1)
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get-jine-o(row)
reset-ne..no
create_ blanks(ni,)
get-input(LIl)
input...pps(LIl)
write..props(l)
change-data(l,l)
input-hangeO,1)
write-dataOl)
desiglulataol,1l)
retract...asert(lIlIlIl)
load-schema(1)
load-design(l)
save-design(1)
chec&.quit(1)
check jiiit2 (lil)
transl
pp
produce(1Ijn)
cut~ln)
cut-top(1,n)
cutjlegsQl,n)
bracketsQl,n)
bracketsjop(1,n)
brackets-jegs(l,il)
screw(1,n)
screw__top(l,n)
screwjegs(1,n)
weld(ln)
weldjop(l,n)
weld jegs(l,n)
assemble(1,n)
assemble-top(l,n)
assemblejlegs(l,n)
finish(1n)
retract-pp
retract-pp-jest
part-one
trans-2
check-..cut(l,l,,,~)
check...scewQI,lIl,l))
check-racketOlXllIl,.lI)
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check-weld(I.,lj,l1)
check..assemblyQl,1,l,1,l,l)
add-quantities
add.quant(n,l,,n)
ret-qty(n)
prnLteport
finished
stillworking

dojetactc(n)
available
can..sched
dojetracd(n,nj,Iln,nn)
doj-etractw(~nn,n)
avail(njln,nn,n)
avail2(n,1,l,n,n,n,n,n,n)
get-next
fig-sost(nJlI,n,n,n,n)
Part-finished
do--etractwt(n,lj)
retracLduplicates(n,1,1)
adj-d=O,n,n,n,l,n,n,n)
check-workingQl,n,l)
retract-sched
Print-working
check-pp..exceptions(I)
disPlaY4pc-xceptions(l)
message(,,)
write..messages
check-sched exceptions
disPlaY-Sched-exceptions
remove-windows

include "color.def"
include "cadmouse.pro",

goal
go.
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clauses

color -of(menu,6).
color-oftsatus,4).
color-of(bigblight15).
color-of(high..schjtext,12).
color...of(schematext, 1).
color-of(schemajbox, 1).
color -offschema-..conn,6).

go repeat,
remove- windows,
design-.phase,
remove_.windows,
translate I,
process-..planning,
translate2,
scheduling,!.

design-.phase:
part-one,
assert(menuno(l)),
get-menu(1),
gotowindow(1),
repeat,
gotowindow(4),
clearwindow,
gwrite(,l,"Select a Commnand from the Menu Window" ,4,O),
get mouse-position(X,Y),
action(l,X,Y,C),
C = "IQuit" ,
retract-offers,
retract-design,!.
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part-one-
text,
graphics(5, 1,0),
makewindow(1 ,4,15,"Process Oriented System" ,O,0,20,54),
makewindow(2,4,4,"Menu",058,1 1,19),
makewindow(3,4,1 3,"Data",13,55,12,25),
makewindow(4,4,9,"Status",20,0,5,54),
gotowindow(l),

itimouse,
show-mouse,
positionjnmouse(30,440).!.

translatel :
text,
graphics(5, 1,104),
makewindow( 1,4,1 5, "Translating Data for Process Planning",0,0,24,80),
transi,
gwrite(l,1l,"Hlit 'ENTER' to continue", 1,0),
readcharti,!.

process-..planning
text,
graphics(5,1,104),
makewindow( 1,4,15,"Process Planning",0,0,24,80),
set-pal,
consult("pp.dat"),
gwrite(0,1l,"process planning started",7,0),

check-pp...exceptions(Namne),

retracLpp,
save("process.d&itC),
retract-pp..ftst,
gwrite(10,1 ,"H-it 'ENTER' to continue",4,0),
readcharL9,!.
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translate2
text,
graphics(5,1,104),
makewindow(1,4,15,'"Translating Data for Scheduling",0,0,24, 80),
trans2,
gwrite(1,1l,"Hit 'ENTER' to continue", 1.0),
readcharU,!.

scheduling :
text,
graphics(5, 1,104),
nmkewindow(1 ,4,15,"Scheduling",0,O,24,80),
set-pal,
assert(clock(0)),
consultC'simdata.dta"),
check-sche~exceptions,
openwrite(dat,"simtest.doc"),

writedevice(dat),
start,
finished,

closefile(dat),
gwrite(1 6,1l,"Scheduling complete - consult simtest.doc for results,1,O),
gwrite(1 8, l,'Hit 'ENTER' to continue",4,0),
readchar(J),
writedevice(screen),!.

remove-windows: removewindow,fail,!.
remove-windows :-!.

getmenu(N):
gotowindow(2).
clearwindow,
retract(menunotj)),
assert(menuno(1 )),
color-f(menu,Color),
repeat,

inenu(NX,
write-inenu(X,Color),
x = "utj
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wrirc..menu(XColor):
retmct(mienuno(R)),
Xl =X,
gwrite(R,1,X1,Color,O),
RI =R+ 1,
assert(mnenuno(R 1))!.

get-mouse..position(CR):

bios(51 mrg(300,O,,,,0),rg,ButtonoR,w))
Button > 0,
C = (Col / 640) * 80,
R =(Row /350) * 24,!.

wfs(C) :-keypressedjreadchar(C),!
wfs(C): wait (2000),wfs(C).

wait(O) L-!
wait(N) NI = N-i1, wait(N1).

actiont,X,..,t"Continuett):
X >58, X<77,
position-mouse(30,440),fail,!.

action(1X2,C) :- X > 58, X < 77,
color..of(highlight,Color),
highlight(1,Color,"Load C Schema"),
gotowindow(4),
clearwindow,
gwrite(O, 1 "Enter the filename: ",4,O),
readdevice(keyboard),
readln(Fname),
load-schema(Fname),
color-f(menu,Mcolor),
bighlight(1,Mcolor,"Load~ C Schema"),
C = "Continue",!.
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action(1,X,3,C) :-X > 58, X < 77,
opened(desigj,
colot..Of(highlighzColor),
highlght(2,Color,"Load Design Data"),
gotowindow(4),
clearwindow,
gwrite(O,1l,"A design data file is already opened", 1,O),
gwrize(2,1,"Press 'ENTER' to continue"4O),
readcharO-,
color-of(menu, Mcolor),
highlight(2,Mcolor,"Load Design Data"),
C - "Continue",!.

action(l,X,3,C) :-X > 58, X < 77,
color-ofthighlight,Color),
highlight(2,Color,"Load Design Data"),
gotowindow(4),
clearwindow,
gwrite(O, 1 ,"Enter the filename: ",4,O),
readdevice(keyboard),
readln(Fname),
load-design(Fnaxne),
colot..of(menu,Mcolor),
highlight(2,Mcolor,"Load Design Data"),
C = "Continue",!.

action(1,X,4,C) :- X > 58, X < 77,
color-of(highlight,Color),
highlight(3,Color,"Update Data"),
geLmenu(2),
repeat,
gotowindow(4),
clearwindow,
gwrite(O,1,"Select a Type or 'Quit"',4,O),
getLmouse-position(X2,Y2),
action(2,X2,Y2,C2),
C2 = "Quit",
ge-uenu(1),
C 9 "Continue",.
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action(lX,5,C) :-X > 58, X < 77,
color-of(highlight,Color),
highlight(4,Color,"Save Design Data"),
gotowindow(4),
cicarwindow,
gwrite(O,1,'Enter the filenamie: "AftO)
readdevice(keyboard),
readln(Fnam),
save-d.esign(Fnamre),
color..of(mcnu,Mcolor),
highlight(4,Mcolor,"Save Design Data"),
C = "Continue",!.

action(l,X,7,C) :-X > 58, X < 77,
check....quit(C),.

action(2,Y,X,C):
schema-object(Type,Xnmin,Ymin,Xmax,Ymax),
X >Xmin, X <Xmax, Y >Ymin, Y <Ymax,
assert(selected(Type)),
position-mouse(30,440),
color -ofthigh..shjext,Color),
highlightjype(Color,Type),
repeat,
geLmenu(3),
gotowindow(4),
clearwindow,
gwrite(,,"Select a Command from the Menu Window",4,O),
get mnouse~position(X2,Y2),
action(3,X2,Y2,C2),

C2= "Qu(it"l,
colot..of(scbemnajextTcolor),
highlightjype(Tcolor,Type),
retract(selected(Type)),
get-renu(2),
C = "Continue",!.

action(2,X,5,C): X > 58, X < 77,
C = "Quit",!.

247



action(3,X,2,C): X > 58, X < 77,
gotowindow(4),
clearwindow,
selected(Type),
gwrite(01 ,"Enter name of object of type",4,O),
Types = Type,
gwrite(0,30Types,1,O),
StrJen(TypeLen),
Input-pos = 30 + Len,
gwrite(O,Input..pos," %,9,0),
readln(Namne),
getLinput(Name,Type),
makewindow(3,4,13,"Data",1 3,55,12,25),
gotowindow(3),
clearwindow,
C = "Continue",!.

action(3,X,3,C) :-X > 58, X < 77,
gotowindow(4),
clearwindow,
selected(Type),
not~kind-ofL-,Type)),
gwrite(1,1,"No data exists for that type", 1,O),
gwrite(2,1, "Press 'ENTER' to continue ",4,O),
readcharU,
C = "Continue",!.

action(3,X,3,C): X > 58, X < 77,
gotowindow(4),
clearwindow,
selected(Type),
gwrite(O, l,"Enter name of object to change: ",4,O),
gwrite(O,3 1," ",1,O),
readln(Nazne),
changejlata(Name,Type),
makewindow(3,4,13,"Data",1 3,55,12,25),
gotowindow(3),
clearwindow,
C = "Continue",!.
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action(3,X,4,C) :-X > 58, X < 77,
gotowindow(4),
clearwindow,
selected(Type),
not(kin~ofC..,Type)),
gwrite(1,1,."No, data exists for that type", 1,O),
gwrite(2,1l,"press 'ENTER' to continue",4,O),
readchar(J,
C = "Continue",!.

action(3,X,4,C) :-X > 58, X < 77,
gotowindow(4),
clearwindow,
selected(Type),
inakewindow(3,4,7,"View Data", 13,55,12,25),
repeat,
kind-of(Qbject-.name,Type),
gotowindow(3),
clearwindow,
reset~ine.no,
gwrite(O, 1,"name:",2,O),ObJs = Object-niame,
gwrite(O,7,Objs,9,O),
write-objects(ObjectnameTp)
gotowindow(4),
clearwindow,
gwrite(O,Il,"Press 'ENTER' to continue or 'q' to quit ",4,O),
readchar(Quit),
Quit = 'l

makewindow(3,4,1I3, "Data", 13,55,12,25),
gotowindow(3),
clearwindow,
C = "Continue",!.

action(3,X,6,C): X > 58, X < 77,
C = Quit",!.
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check-quit(C)
saved(_),
C = "Quit",!.

checkquit(C) :
gotowindow(4),
clearwindow,
gwrite(0, 1 ,"The design data has not been saved", 1,0),
gwrite(l,1l,"Press Ts to save or 'q' to quit ",4,0),
readln(Quit),
check qui(Quit,C),!

chec&..quit2(q,"Quit") :-!.
checkquit2L,"Continue") :-L.

highlight(Row,Color,Text) :
gotowindow(2),Texts = Text,
gwrite(Row, 1 ,Texts,ColorO),!.

highlighzjype(Tcolor,Title):
schema(tex,X,Y,,,Tite),
strjlen(Title,Len),
Y4 =Y +(8 -(Len/ 2)),
X4 =X,
gotowindow( 1),Tifles=Title,
gwrite(X4,Y4,Titles,Tcolor,o),!.

draw-schema:
colorj-of(schemna-ext,Tcolor),
scherna(text,X,Y,,,Tile),
str-len(Title,Len),
Y4 = Y + (8 - (Len / 2)),
X4 =X,
gotowindow(l1),Titles=Title,
gwrite(X4,Y4,Titles,Tcolor,o),
X2 = X-1, X3 = X+3, Y2 = Y+2, Y3 Y+i15,
assert(schemaobject(Title,X2,Y2,X3,Y3))fai,!.
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draw...schema:
color of(schema-ox,Bcolor),
schema(box,XY,X1,Y1J,
X2 = X, Y2 = Y, X3 = XI, Y3 = Y1,
box(X2,Y2,X3,Y3,Bcolor,Bcolor,O),fa,!.

draw...schema:
color-of(schemasonn,ccolor),
schema(conn.X,Y,X 1,Y 1 ,
X2 = X, Y2 = Y, X3 = XI, Y3 = Y1,
linc(X2,Y2,X3,Y3,Ccolor),fail,!.

drawschema,

retract -others: retract(menunoUj),fail,!.
retract-others retract(schemaU,-,J,--),faI,!.
retract-others retact(schemabject(,j,_),fail,!.
retract~others retract(type-J),fail,!.
retract~others retract(num..props_,_)),fail,!.
retract~others retract(selectedtj),fail,!.
retractuothers, retract(openedL-i),fail,!.
retract_others retract(savedtj),fail,!.
retract~others retract(pp-exceptL-J),fail,!.
retract~others :-!1.

retract.Aesign retract(designC-,J),fail,!.
retract..design retract(cindofL..J),fail,!.
retract-design 1-.

retractpp :-retract(product,,i),fail.
retract-pp: retract(exceptionQ-,,-i),fail,!.
retract.pp :-retract(pp-exceptL-,J),fail,!.
retract-pp r atpdaa,, ,,,jal!
retract-pp :-!L

retrac..pp...st: retract(operationt ,,,,,,-,j--),fail,!.
retract-pjest :!

251



retract-sched: retract(waing,,,,j),fai,!.
retract-sched: retract radyL ,,J),fail,!.
retract-sched: retract(dlineC-j-),fail,!.
retract-sched: retract(machinejrypeLj-),fail,!.
retract~sched: retract(clockO-),fail,!.
retract~sched: retract(resoureeL-,.-,.J),fail,!.
retract_sched: retrac(excepionC_,J-),fail,!.
retract-sched: retrat(schecdexceptU,J),fail,!.
retract-sched :-retract(worng,,,-J),fail,!.
retract-sched :-!L

write-objects(ObJType):
type(Type,Prop),
design-Aata(ObJ,Prop,Val),
get line-no(N),Props=Prop,
gwrite(N, 1 ,Props, 12,0),
strjen(Prop,Len),
Write-pos = Len + 1,
gwrite(N,Write_pos,":", 12,0),
Write-pos2 = Len + 3,Vals=Val,
gwrite(N,Writepos2,Vals,1I,0),fail,!.

write-objects-J :-!L

geL-input(NameType)
kIndof(Name,Type),
gotowindow(4),
gwrite(l,1l,"An object already exists by that name", 1,0),
gwrite(2, 1, "press 'ENTER' to continue" ,4,0),
readchar(J,!.

get-input-J
retract(savedUj),fail, 1.



get-nput(Name,Type):
assert(kindof(Name,Type)),
makewindow(3,4,7,"Add Data", 13,55,12,25),
gotowindow(3),
clearwindow,
reset-line-io,
gwrite(0,l1,"name:",2,0),
Qbjs = Name,
gwrite(0,7,Objs,9,O),
wiite-props(rype),
reset~line-no,
inpuLprops(NameType),!.

inputprops(NameType):
type(Type,Prop),Prop "name"~,
Props = Prop,
gotowindow(4),
clearwindow,
g'write(0,l1,"Enter"I,4,0),
gwrite(O,7,Props, 1,0),
strjecn(Prqp,L.en),
Input-pos =Len + 7,
gwrite(0,Input-.pos,":"4,,
readln( Value),
assert(design(Name,Prop,Value)),
gotowindow(3),
Write-pos = Len + 3,
get-ineno(N),
Values = Value,
gwrite(N,Write-pos,Values1,0),fail,!.

iflpu-propsC,):-!.

writo-props(Type):
type(Type,Prop),Prop "name",
Props =Prop,
get.)ine-no(N),
gwrite(N, I,Props, 12,0),
strjen(Prop,Lctn),
Write-pos =Len + 1,
gwrite(N,Writepos,":", 12,0),fail,!.
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wite-propsU):!

change-data(Namej:
gotowindow(4),
not(design(Namne,3J),
gwrite(l, ,"No object exists by that name", 1,O),
gwrite(2,1,"press 'ENTER' to continue",4,O),
readcharj,!.

changce-ata(NamneType) -
gotowindow(4),
not(kinCof(Name,Type)).
gwrite(l, l,"Object is the wrong type", 1,O),
gwrite(2, l,"press 'ENTER' to continue" ,4,O),
readchar~j.

change-..data-J:
retract(savedU),fail,!.

change-data(Name,Type):
makewindow(3,4,7, "Change Data", 13,55,12,25),
gotowindow(3),
clearwindow,
reset~line-no,
gwrite(O,1I,"nanie:",2,O),
Objs = Name,
gwrite(O,7,ObJs,9,O),
write-data(Nanie),
reset-line-no,
input-change(Nanie,Type),!.
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input-change(Name,Type)
ype(TypeProp),Prop "name",

Props = prop,
gotowindow(4),
clearwindow,
gwrite(O, 1,"Enter",4,O),
gwrite(0,7,Props, 1,0),
strjlen(Pwp,Len).
Input.pos = Len + 7,
gwrite(0,InpuLpos,": ",4,O),
readln(Newvalue),
retract-assert(Name,Prop,Value,Newvalue),
gotowindow(3),
Write-pos = Len + 3,
get-line.no(N),
str-jen(Value,Vlen),
create_blanks(Vlen,Blank),
Blanks = Blank,
gwrite(N,Write-pos,Blanks, 1,0),
Values = Newvalue,
gwrite(N,Write-pos, Values, 1,0),fail,!.

inpuLchange_,_:-!1.

write-data(Name):
kInd-of(Name,Type),
type(Type,Prop),
design-ata(Name,Prop,Val),Prop "name",
Props = Prop,Vals = Val,
get-inejio(N),
gwrite(N, 1Props, 12,0),
str-en(Prqp,Len),
Write-pos = Len + 1,
gwrite(N,Write-.pos,":"l,)
Write-..pos2 = Len + 3,
gwrite(N,Writepos2,Vals, 1,0),
fall,!.

write-dataU :- L

design-dataNameProp,Val): design(Name,Prop,Val),!.
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retract-assert(NamPropValueNewvalue):
retract(clcsig(NameProp,Value)),
asser(design(Nazne,PropNewvalue)),!.

load-schema(Fname):
opened(schemaFname),
gotowindow(4),
cicarwindow,
gwrite(0, 1,"This schema data has alrady been loaded", 1,0),
gwrite(2,0,"Press 'ENTER' to continue",4,),
readcharO-,!.

load_schema(Fname):
not(existfile(Fnamne)),
gotowindow(4),
clearwindow,
gwrite(0, I ,"This schema file doesn't exist", 1,0),

r gwrite(2,0,'Press 'ENTER' to continue",4,0),
readchar(-j,!.

load-schema(Fname):
consult(Fname),
assert(opened(schema,Fname)),
gotowindow( 1),
draw_schenaFnanies = Fnanie,
gwrite(O,1 ,"Schema File:"A4O),
gwrite(O, 14,names, 1,0),!.

load-design(Fnamre):
opened(designFname),
gotowindow(4),
clearwindow,
gwrite(O, 1,"This design data has already been loaded", 1,0),
gwrite(2,0,"Press 'ENTER' to continue",4,0),
readcharU,!.
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loaddsign(Fnam):
not(existfflc(ftne)),
gotowindow(4),
cicarwindow.
gwrite(O,1,"This data file doesn't exist", 1,0),
gwrite(2,O,"Press 'ENTER' to continue",4,O)
readchartj),!.

load-design(Fnamc):
existfile(Fnaxne),
consult(Fname),
assert(opened(design,Fname)),
assert(saved(Fname)),
gotowindow(1),
gwritc(1 , 1 ,Data File: ",4,O),
Fnaxnes = Fnarne,
gwrite(1. 14,Fnaxnes,l1,O),!1.

save_design(Fname):
saved(Fnanic),
gotowmndow(4),
clearwindow,
gwrite(O, 1 ,"The design data has already been saved", 1,0),
gwritc(2,0, "Press 'ENTER' to continue",4,0),
readcharj.

save-design(Fname)
save("temp.dat"),
retract-others,
save(Fname),
assert(saved(Fname)),
retractdesign,
consult("temp.dat"),!.

get-line-no(N) -
retract(menuno(N)),
NI = N +1,
assert(menuno(N1)),!.

reset~line-no:
retract(menunoU-).
assert(menuno(1)),!.
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crete- blanks(O,"")
create~bianks(l,"")
create_blanks(N,Blanks) NI = N -1,

create-blanks(NI,Nblanks),
concat(Nblanks," ",Blanks),.

menu(l,"Load C Schema").
mernu(l,"Load Design Data").
menu(l,"Update Data").
menu(l,"Save Design Data").
menu(I,""t).
menu(l,"Quit").

menu(2,""9).
mnenu(2,"").
menu(2,'"").
menu(2,"Quit").

menu(3,"Add data").
rnenu(3,"Change data").
menu(3,"View data").
mnenu(3,"").
menu(3,"Quit").

/* Translatori Rules follow *

transi :- consult("design.dat"),
kind-of(Name,top),
assertqproduct(Name,top, 15)),fail,!.



product(Name,,)
design(Namedepth,Dep),
design(Name,width,Wid),
design(Name,heightjlgt),
design(Name,tolerance,Tol),
design(NamematerialMat),
design(Name~finishFin),
kindof(Namelconnect),
design(Nancl ,typc,Ctype),
design(Name 1"x location",X),
design(Name l,"y location",Y),
design(Namel1,"z location" ,Z),
design(Name2,connectorNaie 1),
design(Name2,radius,Rad),
design(Naxne2,material,Lmat),
design(Naxne2,length,Llen),
assert(ppdata(Nanie,Dep,Wid,Hgt,Tol,Mat,Fin,Ctype,X,Y,Z,Rad,Lmat,Llen,Nane2)),fail,!

transl
retract~design,
save("pp.dat"),
retractpp,!.

1* Process Planning Rules follow ~

pp: product(Naxne,Type,Qty),
produce(Type,Name,Qty),!.

pp: gwrite(O,1 ,"PP failed" ,4,O),.

produce(top,Name,Qty):
cut(Name,Qty),
brackets(Name,Qty),
screw(Narne,Qty),
weld(Name,Qty),
assemble(Name,Qty),
finish(Nanie,Qty),!.
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cut(Name,Qty):
cutop(Name,Qty).
cutjlegs(NameQty),!.

culL,...:) gwrite(1 , 1 "cut failed" ,4,O),!.

cutop(Nanie,Qty):
ppdaa(Name,Dep,Widg,Mat--, ,-.,J,
asscrt(operation(Name,tcutDepWid,Hgt,"O","O","O",MatQty)),!.

cut-egs(Name,Qty),.
ppdata(Nane,,_,_.,_,,X,Y,Z,,Lmat,Llen,Name2),
assert(operation(Nanie2,lcutLlen,"O","O",X,YZLmatQty)),fail,!.

cutnjegs-j :

brackets(Nanie,Qty):
bracketsjop(Name,Qty),
brackets-egs(Name,Qty),!.

brackets_j :-gwrite(2, 1 ,'brackets failed" ,4,O),!.

brackets-top(Name,Qty)

assert(operation(Naie,tbracket,"O","O","O","O","OX"O",Lmat,Qty)),!.

brackets.-topLL.. -!.

bracketsj.egs(Name,Qty):
ppdaa(Name,,,-,,bmcket,Y,Z,,Lmat,Namei2),
assert(operation(Naxne2,lbracket,"O","O","O",X,Y,Z,Lmat,Qty)),fail,!.

brackesjegs_j :4!.

screw(Name,Qty):
SCreWjoDp(Naxne,Qty),
screw-jegs(Nane,Qty),!.

screw-): gwrite(3, 1," screw failed",4O),.
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=cew-top(Name,Qty):

screw-top_j :-!L

=cewjegs(Name,Qty):
PPdata(Name..t-.tscrewX,YZ.,Lmat,-Name2),
asserz(operation(Name2,lscrew,"O","O,"O",X~Y,ZLmt,Qty)),fail,!.

screwjlegs-J :-!.

weld(Name,Qty):
weld-op(Nanie,Qty),
weldjlegs(Name,Qty),!.

weld__j: gwrite(4,1l,'weld failed',4,O),!.

weldjtop(Name,Qty):

weld-jopCj :- L

weld-egs(Name,Qty):

assert(operation(Nane2,lweld,"O","O" ,"0",X,Y,Z,Lmat,Qty)),fail,!.

weldjlegs(J :-!.

assemble(Name,Qty):
assemblejop(Nanie,Qty),
assemblejegs(Nanie,Qty),!.

assemble-J: gwrite(5, 1, "assemble failed" ,4,O),!.

assemble-zop(Name,Qty):
ppdata(Name ,,,-,,bracket,X,YZ ,),
assert(operation(Namne,tassenible,"O", "O","0",X,Y,Z,bracket,Qty)),fail,!.

261



assemble-top(Name,Qty):
ppdata(Name,,,-,-,--,screwX,Y,,-,.-,
assert(operation(Name,tassemble,"O 1 ,"O","O",X,Y,Zscrew,Qty)),fail,!.

assemble top_j :

assemble-legs(Name,Qty):
ppdaa(Name,,,,bracketX,Y,Z,-,,,Name2),
assert(operation(Name2,kissemble,"O","O","O",XY,Zbrcket,Qty)),fail,!.

assemble-legs(Name,Qty):
ppaaNre---,,,-,ce,,Z---,ae)
assert(operation(Name2,lassemble,"O","O',"O",X,Y,Z,screw,Qty)),fail,!.

assemble-legs~ -!.

finish(Name,Qty)

assert(operation(Nanie,finish,"O","O", "O","O","O", "O",Finish,Qty)),!.

fiish_J: gwrite(6,l,'Tinish failed",4,O),!.

/* Translator2 Rules follow *

trans2 :
consult("process.dat"),fail,!.

trans2 :
operaion(Name,tcut,X,Y,Z,,-),
assert(ready(l ,Name,sa,O, 1,1,1)),
checks-ut(tcut,Name,sa,Loc I,X,YIZ),
check.screw(tscrew,Name,Locl ,Loc2,X,Y,Z),
check bracket(tbracket,Name,Loc2,Loc3,X,Y,Z),
check-.weld(tweld,Naine,Loc3,Loc4,X,Y,Z),
check -assembly(tassemble,Name,Loc4,-,X,Y,Z),fail,!.
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Urans2
oprton(Nae~cut,,,x,y,,,j,
assert(ready(1 ,Namne,sa,O, 1,1,1 )),
checkcut(Icut,Name,saLoc I X,YZ),
check--screw(Iscrew,Nayne,Locl1,Loc2,X,YZ),
check bracket~lbracketName,Loc2,Loc3,XYZ),
check-weldolweld.Name,Loc3,oc4,X,Y,Z),
check-assembly~lassernble,Naxe,Loc4,,X,Y,Z),fail)!

trans2
ad~quantities,
retractL-pp,
retract~pp-rest,
save('sched.dat"),!.

check-cut(tcut,Nale,Oldl,a,,,)
operaton(Nale,tcut,,,, ,,Qty),
assert(waitng(1 ,Name,Qldl,a, 1 ,Qty)),!.

checkcut(tcut,,Oldl,Old ,,.,) :-!.

checks-ut(cut,Name,Oldl,a,X,Y,Z):
operaton(Nane,lcut,,,X,Y,Z,,Qty),
assert(waitng(1 ,Nanle,Qldl,a,2,Qty)),!.

checkcut1cut,,Oldij,Old,,, :-!

check...screw(tscrew,Name,Qd ~e--):
operaton(Name,ts rw,-,,-,,,Qy),
concat(Oldl,"e",Trans),
assert(waitng(1 ,Nanle,Oldl,Trans,O, 1)),
assert(waitng(l ,Naxne,Trans,e, 1,Qty)),!.

check-screw(tscrew,,Oldl,Od,J:-!.

check-screw(Iscrew,Name,Qldl,eXYZ):
operaton(Nanescrew,,,X,Y,Z,Qty)
concat(Oldl,"e",Trans),
assert(waitng(1 ,Nanie,Qldl,Trans,O, 1)),
assert(waitng(1 ,Name,Trans,e,2,Qty)),!.

check...screw(screw,,Q cJ,Od,,,):!
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check-bracket(tbracketName,Oldi b,_,)
operation(Nale,tbracket,,,,_,,,Qty),
concat(Qldl,"b")Trans),
assert(waitng(1 ,Nanie,Oldl,Trans,O, 1)),
assert(waitng(1 ,Name,Trans,b,1,Qty)),!.

check-bracket(tbracket, Qll,ldl,,,):-!.

check bracket(lbracket,Name,Oldl,b,X,Y,Z):
operation(Naxe,lbracket,,,X,Y,Z,,,Qty),
concat(Qldl,"b",Trans),
assert(waitng(l1,Nanie,Qldl,Trans,o, 1)),
assert(waitng(1 ,Narne,Trans,b,2,Qty)),!.

check-bracketalbracket,-,Qldl,Oll,,J:-!.

check-weld(tweld,Name,Oldl,c,,,-)

concat(QldI, 'c",Trans),
assert(waitng(1 ,Nanie,Oldl,TransO, 1)),
assert(waitng(l 1 Nanie,Trans,c, 1 ,Qty)),!.

check-weld(tweld,,Oldlldl,,-,):-!_

check-weld(lweld,Naxne,Oldl,c,X,Y,Z):
operation(Nare,lweld,,,X,Yz ,Z,,Qty),
concat(Old, 1'c",Trans),
assert(waitng(l1,Name,Oldl,Trais,O, 1)),
assert(waitng( 1,Name,Trans,c,2,Qty)),!.

check-weld(lweld,-,Oldl,Oldll,,-,) :-!

check assembly(tassemble,Name,Oldl,d,_, ).
operation(Naie,tassemble,,,,,Qty),
concat(Oldl,"d",Trans),
assert(waitng( 1,Nanie,Qldl,Trans,O, 1)),
assert(waitng(1 ,NameTrans,d,1 ,Qty)),!.

chec~k_assembly(tassemble,-,Oldl,Oldl,,,_):-!.

check assemblyolassemble,Name,Oldl,d,X,YZ):
operation(Name,assenble,,(YZQty),
concat(Oldl,"d",Trans),
assert(waitng( 1,Name,Oldl,Trans,O, 1)),
assert(waitng( I Name,Trans,d,2,Qty)).!.

check_assembly(Iassemble, ,Oldl,Old,,,):!
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add-quantities
retract(waitng(N,Nale,Fr,To,Tool,Qty)),
assert(quantity(Qty)),
ad-quant(N,Name,Fr,To,Tool),
retract(quantity(Newq)),
asserc(waiting(N,Nam~e,FrTo,Tool,Newq)),fail,!.

add-quantities :-!L

addquant(N,Nane,Fr,To,Tool):
Tool = 0,
retract(waitng(N,Nam,FrTo,,),
fail,.

add.quant(N,Name,Fr,To,-i
retract(waitng(N,Nanme,Fr,To,-,Qty)),
ret-qty(Q),
Newq = Qty + Q,
assert(quantity(Newq)),fail,!.

add~quantL_,,_.. ) :- L

reLqty(Q) : retract(quantity(Q)),!.

/* Scheduling Rules follow ~

finished :

not(stillworking),!.

still-working: workingQ-,-,,,,Tine),Time > 0.

start
do~retractc(T),
Ti = T+ 1,
assert(clock(TI )),
available,
print-report,
partflnished,!.
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do~retractc(T)- retract(clock(T)),!.

available :-not(can-sched), 1.

available:
repeat,
geLnext,
do__etractl(Cost,P,Nane,Mt,Tool,Mn,Time),
do-retractw(Mr,Mn,O,Cost),
avail(PName,Mt,Tool,Mn,Tinie,Cost),
not(can-sched),!.

can_sched:
ready(P,,c,,,j),
not(wtng(P,,-,c,-,-),

c a n s c h d n c , , , , , , ,!

can-sched:

Mt <> "c", Mt <>""

do rect(ot,,m,M,To,MnTie

dretractls(Cost,P,Name,Mt,Tool,Mn,Time)),!

do~retractw,,9999) :
do._retractw(Mt,Mn,D,j: retract(working(Mt,Mn,,,_,,D)),!.

avail(P,Name,Mt,Tool,Mn,Time,-):
avail2(PName,Mt,Tool,Mn,Time,Qrgquan,Quan,Seq),
Quan I = Quan - 1,
Seql =Seq + 1,
QuanI > 0,
assertz(ready(P,Name,Mt,TooI,Org-quan,Quan 1 ,Seq 1)),
retractjluplicates(P,Nanme,Mt),!.
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avail2(P,Name,Mt,Tool,Mn,Tixne,Org-quan,Quan,Seq)
retract(ready(P,Name,Mt,Tool,Qrgquan,Quan,Seq)),
assert(working(Mt,Mn,Tool,P,Name,Seq,Timle)),!.

retract_4uplicates(P,Name,c) :
ready(P,Name2,c,,J,
Name2 <> Name,

reract..dupficates(PName,d) :
ready(P,Name2,d,,,,
Name2 <> Name,
retrct(ready(P,Name2,d,,-J),fail,!.
retracLduplicates,3 :-!L

get-next: assert(least(9999,O,x,x,O,O,O)),
ready(P,Name,c,Tool,,,_),

fig-ost(P,Name,c,Tool,Cost,Mn,Time-req),
Ieat(X,Y,NZ,A,B,C),
Cost < X,
do -retractl(X,Y,NZ,A,B,C),
assert(least(Cost,P,Name,c,Tool,Mn,Timejreq)),
fail,!.

get-next:
ready(P,Name,d,Too,_,),
not(wang(P,,,d,J),
fig-ost(P,Name,d,Tool,Cost,Mn,Timereq),
least(X,Y,N,Z,A,B,C),
Cost < X,
do -retractl(X,Y,N,Z,A,B,C),
assert(1east(Cost,P,Name,d,Too1,MnTime_req)),
fail,!.
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get-next
ready(P,Name,Mt,TOOl,.,-J,
Mt <> "c", Mt <>""

fig-ost(P,Name,Mt,Too,Cost,MTime-.Yeq),
ieastMXY,NZ,A,B,C),
Cost < X,
do_retractl(X,Y,N,Z,A,B,C),
assert41east(Cost,P,Name,Mt,Tool,Mn,Tim~e-Xec)),
fail,.

getnext :-!L

figsost(P,Name,Mt,Too,CostM,Time -re):

working(t,-,,PNam,,Time),Timfe 0,
dline(P,D),
resource(Mt,Too,Mfl,Timc _req),
Cost =D * Tjimereq - 3,!.

figsost(P,Nae,Mt,Too,Cost,Mfl,TiflC-req):
working(Mt,Mn,_,,Namel,_,O),
dline(P,D),
resource(Mt,Tool,Mf,Tinflejeq),
Cost = D * Tinejyeq -2,!.

fig-cost(P,,Mt,Too,Cost,Mfl,Time-req):
working(Mt,Mfl,,P,-,O),
dline(P,D),
resource(Mt,Tool,Mf,Timejreq),
Cost = D * Tinie-eq - 1,.

fig-ost(P,,MtToo1,Cost,Ml,Time,_req):

dline(P,D),
resource(Mt,Tool,Mfl,Timfe~req),
Cost = D * Time..req,.
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part-jinished: working(Mt,Mn,Tool,P,Name,Seq,Tixnejeft),
Timejleft > 0,
adjjime(Mt,Mn,Tool,P,Name,Seq,Timejeft,New time),
New -tine =O0,
not(ready(P,Name,Mt,Too,-J),
check-working(Mt,P,Name),
do-retractwt(P,Name,Mt),
fail,!.

parLfinished :-!1.

check-working(Mt,P,Nanie)
wordng(t,,P,Name,,Time),Time 0,!,fail.

check orkngL,J:!

do~jetractwt(P,,c) .,c
retract(waiting(P,Name,cNew-mtNewjtool,Newquan)),
Qrg-quan = New...quan,
assert(ready(P,Name,New-mt,New-ool,Org.quan,New-quan, 1)),!.

do -retractwt(P,Name,Mt) :
retract(waiting(P,Name,Mt,Newnnt,New-tool,Newquan)),
Org..quan = Newjjuan,
assert(ready(PNme,New-mt,New-tool,Orgquan,New-quan, 1)),!.

adj-tme(Mt,Mn,Tool,P,Name,Seq,Timle left,Newtime) -
retract(working(Mt,Mn,Tool,P,Name,Seq,Time-left),
New-ime = Time-left - 1,
asserta(working(Mt,Mn,Tool,P,Name,Seq,New-time)),!.

print-report :- nlclock(Time),
write("clock period - "),write(Tme),nl,
write("working processes - ",]
not(printworking),!.

printLworking: working(A,B,C,D,N,E,F),F > 0,
write(D),write(" )

write(N),write("")
write(A),write("")
write(C),write("")
write(B),write('")
write(E),write(" )

write(F),nI,fail,!.
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I"' Process Planning Exception Rules follow/

check-pp-.exceptionsUj
consult("ppexceptdat"),fail,!.

chck-pp-.exceptionsU:

pp-except(tolerance,Besttol),
str-real(Bestjtol,Bt),
sirreal(Tol,T),

not(exception(toleranceTol,Besttol)),
assert(exception(toleranceToI,Best_tol)),fail,!.

check...pp...exceptionsU:

pp-.except(radius,Badjrad),
Rad =Bad-rad,
not(exception(radius,Rad,Bad rad)),
assert(exception(radius,Rad,Badrad)),Fail,!.

check -pp exceptions(Nanie):
exception,J,
display-ppexceptions(Name),
retract-pp,
retracLpp-est,
%fail.

check-pp--exceptions(_) L-!
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display-ppexceptions(Name):
makewindow(5,4,1 5,"Exception Report' ,3,10,19,60),
gotowindow(5),
gwrite(0,25,"Memorandum", 1,0),
gwrite(1,2,"To:. Design Depariment",l,),
gwrite(2,2,"From: Process Planning Department", 1,0),
gwrite(3,2"Subject: Exceptions on design project",1,0),
Names = Name,
gwrite(3,40,Names,4,O),
assert(menuno(5)),
write-messages,
retract(menunoo)),
gwrite(1 5,5,"Hit 'ENTER' to continue",4,O),
readcharU,!.

write-messages:
exception(Type,Val,Std),
message(Type,Val,Std),
get_line_noUi,fail,!.

write-messages :-!1.

message(tolerance,Tol,Best.sol)
get~line~no(N),
gwrite(N,2,"The value of the", 1,0),
gwrite(N, 19,"tolerance",4,0),
gwrite(N,29,"for this project is",l1,0),
get line_no(N 1),
gwrite(N1,2,"too restrictive. A value of ',1,O),
Bt = Besttol, T = Tol,
strJen(Bt,Btjlen),
gwrite(NI ,30,Bt,4,0),
Pos = 31 + Btjlen,
gwrite(NI,Pos,"or greater is far less',,),
get~line_no(N2),
gwrite(N2,2,"costly than the value", 1,0),
gwrite(N2,24,T,4,0),!.
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message(radius,Radj-:
gethfle-no(N),
gwrite(N,2,"The value of the", 1,0),
gwrite(M,19,"radius"A4,),
g'write(N,26,"for this project is"', 1,0),
getj-ine..no(N 1),
gwrite(N1,2,"too expensive. A value of ",,),
gwrite(NI,28, 1.5"A4O),
gwrite(N1 ,32,"or", ,),
gwrite(N1 ,35,' 175",4,0),
griteN 1,4O,"is far less", 1,0),
getjine-o(N2),
gwrite(N2,2,"costly than the value", 1,0),
R =Rad,
gwrite(N2,24,R,4,0),!.

message(machine,Mt,Msg):
get-line-no(N),

r gwrite(N,2, "Ile machine yoli have requested, 1,I,0),
machinejtype(MtMname),
Mts = Mnanie,
gwrite(N,34,Mts,4,O),
getjine.jo(N 1),
gwrite(N1,2,"for this project is",,),
getjfineno(N2),
Msgs = Msg,
gwrite(N2,2,Msgs,4,O),
getjineno(N3),
gwrite(N3,2,"Please revise your design and resubmit. ",,O),!.

f* Scheduling Exception Rules follow *

checksched-exceptions:
consult("scexcept.dat"),fail,!.

check-sched-exceptions :

sched-.except(machine,Mt,Msg),
not(exception(machine,Mt,Msg)),
assert(exception(machine,Mt,Msg)),fail,!.

272



checl sched-exceptions:

schedexcept(machine,Mt,Msg),
not(exception~machine,Mt,Msg)),
assert(exception(machine,MtMsg)),fail,!.

check_schedexceptions:
exceptionL-,..J,
display-sched-exceptions,
retract-sched,!,Ail.

check-sched-exceptions :- L

display-sched exceptions:
makewindow(5,4,15, "Exception Report",3, 10,19,60),
gotowindow(5),
gwrite(0,25,"Memorandum",l ,0),
gwrite(1,2,"To: Design Department", 1,0),
gwrite(2,2,"From: Scheduling Department", 1,0),
gwrite(3,2," Subject: Exceptions on design project", ),
gwrite(3,40,"top 1 ",4,O),
assert(menuno(5)),
write_messages,
retract(menunoC-)),
gwrite(15,5,"Hit 'ENTER' to continue" ,4,0),
readcharUj,!.

gwzite(R,C,S,Color,0):-
cursor(R,C),attribute(Color),write(S).

gwrite_,,"",-.

gwrite(R,C,S,Color, 1):-
cursor(R,C),attribute(Color),
frontchar(S,Ch,S 1 ),write(Ch),
R1=R.-1,
gwrite(R 1 ,C,S 1 ,Color, 1).

repeat
repeat :-repeat.
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setEGApalette(L):-
X="012345678901234567",
ptr...dword(X,Segmeflt,Offset),
putinlist(L,Segment,Offset),
bios($l0,reg($ 1002,0,0,OffsetO,O,,Segment)J.

putinlst([ByteMT,Segmelt,Offset):-
membyte(Segment,Offset,Byte),
Offset2=_Offset+1,
putinlist(TSegment,Offset2).

B. DATA-ORIENTED PROTOTYPE LISTING

code= 3200
project "datadr"
domains

file = dat
1= symbol
n =integer

r =real

include "tdoms.pro"
include 'gdoms.pro"

database
menuno(row)
schema(l,row,col,row,col,l)
scbemaobject(l,n,n,n,n)
type(1,l)
num...props(l,n)
selected(l)
design(,1,l)
kind-of(l,I)
opened(l,l)
saved(l)
productol,l,n)
clock(n)
ready(n,l,l,n,n,n,n)
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waiting(nl,,1n,n)
quantity(n)
woring(l,n,n,njl,n,n)
least(n,n,ln,nn)
dline(n,n)
resourceQln,n,n)
machinetyrpe(l,l)
machine-used(lIl)
pp..except(,l)
scheitexcept(l,l,l)
key(char)
pcolor(n,n)
locate(l,n,n)
trans(l,n,n,n,n,n)

global Predicates

determ box(vrow,vcol,vrow,vcol,color,color,fill) - (iiiiii)language c
/* (Row 1 ,Col 1 ,Row2,Col2,LineColorFillColorFiUl)
Range for Rows: 0-31999
Range for Columns: 0-31999
Fill = 0 A box will be drawn with color LineColor

but not filled
= 1 A box will be drawn with color LineColor

and filled with color LineColor*/

predicates
gwrite(row,col,string,color,integer)
nondeterm repeat
setEGApalette(integerlist)
putinlist(integerlist,integer,integer)
wfs(char)
wfs2
wait(n)
set-pal
go
design-phase
scheduling
get..menu(n)
writemenuol,color)
menu(n,l)
getmouseposition(n,n)
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action(n,n,n1)
highlight(row,color,l)
coloroffl,color)
draw-schema
highlightjype(color,l)
retract.-others
retract-design
write-objects(l,l)
getjinejio(row)
reset-line-no,
creatc-blanks(nj)
get-input(1,l)
lflput-props(1,l)
inputprops2(l,n,I)
write-props(l)
changejlata(,1)
input-change(l,l)
input-hange2(l,n,l)
write-data(l)
design-ata(1,1,1)
retract -assert,1,1,1)
load-schenia(1)
load-designQ)
save_design(1)
check-quit(l)
checkcquit(l,l)
create-pp-.data
check cuta,l,n,,1)
check screw(l,1,n,l,1)
check bracket1,l,n,l,I)
check-weld1,l,n,1,l)
cbec-k-.assenbly(,,n,1,1)
retractpp
retracLpp-rest
part-one
prin~report
finished
still-working
start
do_retractc(n)
available
can-sched
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do -retractl(n,n,l,l,n,n,n)
do~retractwQ,n,n~n)
avail(n,l,l,n,n,n,n)
avaUl(n,l,lIn,n,n,n,n,n)
get-next
figsost(n,,1,n,n,n,n)
part-finished
do~retractwt(n1,)
retract_jduplicates(n,l,l)
adj..time(1,n,n,n,l,n,n,n)
check-working(1,n,l)
retract_sched
print-working
message(l,l,l)
draw-machines
draw_mach2
display .jeady(n,1,n,n)
display-working
display jinished(n,l)
display-start
clear _start(n)
clearqueueQ,n)
clearqs(l,n,n)
clear _mach(l,n)
draw-queues
draw-tras(n,n,n,n,n)
displayjrans1,n,n)
validate-dataQl,l)
iemove-windows

:nclude "color.def'
include "cadmouse.pro"

goal
go.
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clauses

color..oftmenuf6).
colorj-f(status,4).
colot..of(highlight, 15).
color..pf(high_sch_text,12).
color...of(scherna..text,1).
colot..of(schena.box, 11).
color ..of(schenajonn,6).

go :-repeat,
design-phase,
remove-windows,
scheduling,!.

design-phase:
part-one,
assert(xnenuno(l )),
get-mcnu(l),
gotowindow( 1),
repeat,
gotowindow(4),
clearwindow,
gwrite(O,1l,"Select a Command from the Menu Window" ,4,O),
get.-iouse-.position(X,Y),
action( OXY,C),
c ="Qi,
create...ppd4ata,
retract~sched,!.
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part-one
text,
consult("ppexcept.dat"),
consult("scexcept.dat"),
consult("schedinfidat"),
grahics(5, 1,0),
seLpal,
makewindow( 1,4,15,"Data Oriented System",0,0, 19,54),
makewindow(2,4,4, "Menu ",0,58, 11,19),
makewindow(3,4, 13, "Data", 13,55,12,25),
makewindow(4,4,9,"Status",19,0,6,54),
gotowindow( 1),
init_mouse,
show_mouse,
position-mouse(30,440),!.



scheduling
makewindow(1 ,104,1 ,"Shop Floor Simulation",0,0,25,80),
shiftwindow(l),
gwrite(2,45,"check-in", 12,0),
gwrite(6,2,"cutting", 10,0),
gwrite(7,2,'machines", 10,0),
gwrite(6,70,"boring", 10,0),
gwfite(7,70,"machines",10,0),
gwrite(1 6,2,"welding",10,0),
gwrite(17,2,'machines", 10,0),
gwrite(16,70,"assembly", 10,0),
gwrite(17,70,"stations", 10,0),
gwrite(22,45,"finished", 12,0),
consult("simdata.dta"),
consult("schdata.dta"),
consult("sched.dat"),
draw-mach.2,
not(draw-queues),
assert(clock(0)),
assert(key('s')),
openwrite(dat,"simtest.doc"),
repeat,

writedevice(dat),
start,
finished,

closefile(dat),
wfsu,
writedevice(screen),!.

remove- windows: removewindow,fail,!.
remove-windows :-!L

ge~jnenu(N):
gotowindow(2),
clearwindow,
retract(menuno~j),
assert(menuno(1 )),
color-of(menu,Color),
repeat,

raenu(N,X),
write-menu(X,Color),
X = "Quite,!.
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writemenu(X,Color) :-retract(menuno(R)),X I X
gwrite(Rj1,Xl1,Color,O),
RI =R+ 1,
assert(menuno(R 1)),!.

getjnouse..psition(C,R):
repeat,
bios(5 1 jeg(3,O,O,O,O,O,O,O),regL_,Buttofl,Co1,Row,.,,)),
Button > 0,
C = (Col / 640) * 80,
R =(Row / 350) * 24,!.

wfs(C) :-keypressedreadchar(C),!.

wfs(C) :-wait (2000),wfs(C).

wait(0) L-!
wait(N) :- NI = N-i, wait(N1).

actionU-X,-,"Continue"):
X >58, X < 77,
position mouse(30,440),fail,!.

action(1,X,2,C) :-X> 58, X < 77,
color ..of(highlight,Color),
highlight(1,Color,"Load C Schema"),
gotowindow(4),
clearwindow,
gwrite(O, 1 ,"Enter the filename: ",4,0),
readdevice(keyboard),
readin(Fname),
loadscherna(Fname),
color...of(menu,Mcolor),
highlight(1,Mcolor,"Load C Schema"),
C = "Continue",!.
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action(1,X,3,C) :- X > 58, X < 77,
opened(designJ,
color...of(highlightColor),
higlilight(2,Color,"Load Design Data"),
gotowindow(4),
clearwindow,
gwrite(O,1,"A design data file is already opened",l,O),
gwrite(2,1l,"Press 'ENTER' to continue",4O),
readcbarUj,
color-of(menu,Mcolor),
higblight(2,Mcolor,"Load Design Data"),
C = "Continue",!.

action(I,X,3,C) :- X > 58, X < 77,
color _of(highlight,Color),
highlight(2,Color,"Load Design Data"),
gotowindow(4),
clearwindow,
gwrite(O, I ,"Enter the filename: ",4,O),
readdevice(keyboard),
readln(Fnaine),
loadesign(Fniaxe),
color-of(menu,Mcolor),
highlight(2,Mcolor,"Load Design Data"),
C = "Continue",!.

action(I X,4,C) :-X > 58, X < 77,
color -of(bigblight,Color),
highlight(3,Color,"Update Data"),
get-mjenu(2),
repeat,

gotowindow(4),
clearwindow,
gwrite(Ol,"Select a Type or 'Quit"',4,O),
get_.mouse-.position(X2,Y2),
acfion(2,X2,Y2,C2),
C2 = "Quit",

get..menu(l),
C = "Continue",!.
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action(1,X,5,C) :-X > 58, X < 77,
color-.of(highlight,Color),
highlight(4,Color,"Save Design Data"),
gotowindow(4),
clearwindow,
gwrite(O,1,"Enter the filename: ",4,O),
readdevice(keyboard),
readln(Fname),
save-design(Fnazne),
color...of(mnenu,Mcolor),
highlight(4,Mcolor," Save Design Data"),
C = "Continue",!.

action(1,X,7,C) :- X > 58, X < 77,
check-quit(C),!.

action(2,YX,C):
schema-object(Type,Xmi,YminXmax,Ymax),
gotowindow(3),
clearwindow,
X >Xmin, X <Xnax, Y >Ymin, Y <Ymax,
assert(selected(IType)),
position..mouse(30,440),
color-of(high..sc-text,Color),
highlight..type(ColorType),
repeat,
getjnenu(3),
gotowindow(4),
clearwindow,
gwrite(O, I," Select a Command from the Menu Window",4,O),
geLmouse..position(X2,Y2),
action(3,X2,Y2,C2),
C2 = "Quit",

colortof(schema~text,Tcolor),
highlightype(Tcolor,Type),
retract(selectedQType)),
get-menu(2),
C = "Continue",!.

action(2,X,5,C) :- X > 58, X < 77,
C = "Quit",!.
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action(3,X,2,C): X > 58, X < 77,
gotowindow(4),
clearwindow,
selected(Type),
gwrite(O, l,"Enter name of object of type",4,0),
Types = Type,
gwrite(0,30,Types,1 ,O),
strjenType,Len),
Input .pos = 30 + Len,
gwrite(0,Input-pos," ",9,O),
readln(Name),
get-input(NameType),
maakewindow(3,4,1 3,"Data",1 3,55,12,25),
gotowindow(3),
clearwindow,
C = "Continue",!.

action(3,X,3,C) :-X > 58, X < 77,
gotowindow(4),
clearwindow,
selected(Type),
not(kind-ofC,Type)),
gwrite(1,1l,"No data exists for that type",l1,O),
gwrite(2, I ,"press 'ENTER' to continue" ,4,O),
readcharUj,
C = "Continue",!.

action(3,X3,C) :-X > 58, X < 77,
gotowindow(4),
clearwindow,
selected(Type),
gwrite(O,1l,"Enter name of object to change:",4,0),
gwrite(O,3 1," ",,),
readln(Nazne),
change..Aata(Name,Type),
makewindow(3,4,1 3,"Data", 13,55,12,25),
gotowindow(3),
clearwindow,
C = "Continue",!.
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action(3,X,4,C) :-X > 58, X < 77,
gotowindow(4),
clearwindow,
selected(Type),
not(kindofL-,Type)),
gwrite(1,1,"No data exists for that type", 1,0),
gwrite(2,1l,"press 'ENTER' to continue",4,O),
readcharUj,
C = "Continue",!.

action(3,X,4,C) :-X > 58, X < 77,
gotowindow(4),
clearwindow,
selected(Type),
rnakewindow(3,4,7, "View Data", 13,55,12,25),
repeat,
kind-of(Objectnam,Type),
gotowindow(3),
clearwindow,
reset-linejo,
gwrite(O, 1,"name-:",2,O),Objs = Object-nam~e,
gwrite(O,7,Objs,9,O),
write -objects(Object..name,Type),
gotowindow(4),
clearwindow,
gwrite(O,1l,"Press 'ENTER' to continue or 'q' to quit "%4,O),
readchar(Quit),
Quit = 'q',

niakewindow(3,4, 13,"Data", 13,55,12,25),
gotowindow(3),
clearwindow,
C = "Continue",!.

action(3,X,6,C) :-X > 58, X < 77,
C = "Quit",!.

check..quit(C) -
savedL.)
C ol= itj



check...quit(C)
gotowindow(4),
clearwindow,
gwrite(O, 1 ,"The design data has not been saved", 1,0),
gwrite(1, 1,"Press 's to save or 'q' to quit ",4,0),
readlin(Quit),
checl&.quit:2(Quit,C),.

check.quit2(q,"Quit") :-!L

check...quit2U_"Continue") :-!.

highlight(Row,Color,Text):
gotowindow(2),Texts = Text,
gwrite(Row,1 ,Texts,Color,0),!.

highlight Ax(TcolorTitle):
schema(textX,Y,,-,Title),
strlen(Title,Len),
Y4 = Y + (8 - (Len / 2)),
X4 =X,
gotowindow(l1),Titles=Title,
gwrite(X4,Y4,Titles,Tcolor,0),!.

draw-schema:
color oftschema-jext,Tcolor),

strjen(Title,Len),
Y4 = Y + (8 - (Len / 2)),
X4=X,
gotowindow(l1),Titles=Title,
gwrite(X4,Y4,Titles,Tcolor,0),
X2 = X-1, X3 = X+3, Y2 = Y+i2, Y3 =Y+15,

assert(schemaj-object(TitleX2,Y2,X3,Y3)),fail,!.

draw._schema:
color -of(schemna box,Bcolor),
schema(boxX,YXI ,Y1,
X2 = X, Y2 = Y, X3 = XI, Y3 = Yl,
box(X2,Y2,X3,Y3,Bcolor,Bcolor,0),fail,!.
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draw_schema:
color...pf(schenia-conn,Cc~olor),
schema(connX,YXI1,Y1 ,,
X2 = X, Y2 = Y, X3 = XI, Y3 = Y1,
line(X2,Y2,X3,Y3,Ccolor),fail,!.

draw_schema.

retract_others :-retract(menuno(J),fail,!.
retract_others rtact(schema-,,-,j),fail,!.
retract_others retract(sc~eiA-objectU,,,J),fail,!.
retract_others retract(vype-J),fail,!.
retract--others :retract(num-.propsQJ),fail,!.
retract-others retract(selectedtj),fail,!.
retract_others; retract(opened-,_),fail,!.
retract-others retract(savedU),fail,!.
retractotbers: retract(sce-exceptL-,,_),fail,!.
retract_others retract(machinejiusedQ_,_),fail,!.
retract-others retract(ppe.!xcept(-j-),fail,!.
retract_others, retract(keytj),!.
retract_others 1-.

retract-design retract(designL-,.,_),fail,!.
retract-design retract(kin-ofC-,_),fail,!.
retract-design :-.

retract-pp retract(productL-,,-),fail,!.
retract~pp retract(jp-exceptL,J),fail, I
retract-pp L-!

retract-pp-sest :!

retract_sched: retract(waitngL_,_,,,),fail,!.
retract-sched: retract(readyL_,,,.,-..,-),fail,!.
retract_sched :-retract(dline_j_),fail,!.
retract~sched: retract(machinetye() C il!
retract-sched retract(clockUj),fail.
retract-sched retract(resourceC_,..,_..),fail,!.
retract_sched: retract(schedexceptL-,,)),fail,!.
retract_sched : retrct(wolngL-,,,-,J--),fail,!.
retract~sched :-!1.
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writeobjecskObJ,Type):
t) pe(Type,Prop),
designdata(Obj,Prop,Val),
gctJlno"N,Prqps=Prop,
gwrite(N,l1 ,rops, 12,0),
stzrjen(Prop,Len),
Writc...pos =Len + 1,
gwrite(N,Write..pos,":",12,0),
Write-pos2 = Len + 3,Vals=Val,
gwrite(N,Write-ps2,Vals, 1,0),fail,!.

write...objcts-j :-!.

getjnput(Naxne,Type):
kind-of(Naine,Type),
gotowindow(4),
gwrite(l,1l,"An object already exists by that name", 1,O),
gwrite(2, 1 ,"press 'ENTER' to continue",4,0),
readcharUj,!

ge-input-J:
retract(savedU),fail,!.

getjnput(Name,Type):
asset(indof(Nane,Type)),
makewindow(3,4,7,"Add Data", 13,55,12,25),
gotowindow(3),
clearwindow,
reset-ine..no,
gwrite(0, 1,"nanie:",2,0),
ObJs = Name,
gwrite(0,7,ObJs,9,0),
write-..props(Type),
reset-line-no,
input-props(Nanle,Type),!.
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input-props(Name,Type):
type(TypeProp),Prop"nm,
inpuLprops2(Prop,Len,Value),
assert(design(Name,Prop,Value)),
gotowindow(3),
Write-pos =Len +3,
getline-no(N),
Values = Value,
gwrite(N,Write...pos,Values,l ,0),faiI,!.

inpu-props-J :-!.

input-props2(PropLxn,Value)
Props = Prop,
repeat,

gotowindow(4),
clearwindow,
gwrite(O,l ,"Enter",4,0),
gwrite(0,7,Props,l ,O),
strJen(Prop,Len),
Input-pos = Len + 7,
gwrite(O,Inpu-pos,':"4,)
readln(Value),
validate.Aata(PropValue),!.

writc-props(Type):
type(Type,Prop),Prop "name",
Props = Prop,
get-line..no(N),
gwrite(N, 1,Props, 12,0),
strJen(Prop,Len),
Write-pos =Len + 1,
gwrite(N,W'rite-pos,":", 12,O),fail,!.

write-propsL) :-!L

changeji4ata(Namej:
gotowindow(4),
not(desig(Name,J),
gwrite(1, l,"No object exists by that namie", 1,0),
gwrite(2, I ,"press 'ENTER' to continue",4,0),
readcharL-),!.
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change-data(Name,Type)
gotowindow(4),
riot(kind-of(Name,Type)),
gwrite(1, 1,"Object is not correct type", 1,0),
gwrite(2, 1 ,"press 'ENTER' to continue",4,O),
readchartj),!.

change~data_,_):
retract(savedL)),fail,!.

change-data(Name,Type):
niakewindow(3,4,7, "Change Oath", 13,55,12,25),
gotowindow(3),
clearwindow,
reset-line no,
gwrite(0, 1, "namne: ".2,O),
Objs = Name,
gwrite(0,7,Objs,9,o),
write-data(Narne),
reset line no,
input.change(Naxne,Type),!

input-change(Name,Type):
tYPe(Type,Prop),Prop "name",
input-change2(Prop,Len,Nealue),

retract-assert(NamePropValueNewvalue),
gotowindow(3),
Write-pos =Len + 3,
getiine-no(N),
str-jen(Value,Vlen),
create--blanks(Vlen,Blank),
Blanks = Biank,
gwrite(N,Write-posBlanks,1,0),
Values = Newvalue,
gwrite(N,Write-pos,Vlues,1 ,0),fail,!.

iflpuLchange(,) :!
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input-hange2(PropLen,Newvalue):
Props = Prop,
repeat,

gotowindow(4),
clearwindow,
gwrite(0l1,"Enter",4,O),
gwrite(0,7,Props, 1,0),
strjlen(Prop,en),
InpuLpos = Len + 7,
gwrite(O,Input..pos,": ",4,O),
readln(Newvalue),
validate -data(PropNewvalue),!.

write-data(Name):
kindof(Naxne,Type),
type(Type,Prop),
design...data(Naxne,Prop,Val),Prop "name",
Props = Prop,Vals = Val,
geL-lineno(N),
gwrite(N, ,rops, 12,0),
strjen(Prop,Len),
Write-pos = Len + 1,
gwrite(N,Write-pos,":", 12,0),
Write-pos2 = Len + 3,
gwrite(N,Writepos2,Vas 1,0),

write-dataU):-!.

designj.ata(Name,prop,VaI): design(Name,propval),!

retracL-assert(NameProp,ValueNewvalue):
retract(design(Name,Prop,Value)),
assert(design(Name,Prop,Newvalue)),!

load schema(Fname) .
opened(schema,Fnanie),
gotowindow(4),
clearwindow,
gwrite(0,1l,"This schema data has already been loaded", 1,0),
gwrite(2,0,"Press 'ENTER' to continue",4,0),
readchar(J,!.
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load_schezna(Fnaxne):
not(existfile(Fname)),
gotowindow(4),
clearwindow,
gwrite(O,1,"This schema file doesn't exist"J,10),
gwrite(2,O,'Press 'ENTER' to continue",4,O),
readcharU,!.

load-schcma(Fname):
consult(Fname),
assert(opened(schema,Fname)),
gotowindow( 1),
draw-schema,Fnames = Fname,
gwrite(O,1 ,"Schema File: ",4,O),
gwrite(O,14,Fnames,1 ,O),!.

load-design(Fname):
opened(design,Fnarne),
gotowindow(4),
clearwindow,
gwrite(O, l,"This design data has already been loaded",l1,O),
gwrite(2,O,"Press 'ENTER' to continue",4,O),

F rtadcharUj,!.

load-design(Fname):
not(existfieFni))
gotowindow(4),
clearwindow,
gwrite(O, l,"This data file doesn't exist", 1,O),
gwrite(2,O,"Press 'ENTER' to continue",4,O),
readcharU,!.
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load~design(Fname):
existfile(Fname),
consult(Fnaxne),
assert(opened(design,Fnaine)),
assert(saved(Fnanie)),
gotowindow(l),
gwrite(l, l,"Data File: ",4,O),
Fnames = Fname,
gwrite(l. 14,Fnanies,1,O),!.

save...esign(Fname) -
saved(Fname),
gotowindow(4),
clearwindow,
g'write(,l,"The design data has already been saved",1 ,O),
gwrite(2,O,"Press 'ENTER' to continue",4,O),
readcharC_),!.

save-design(Fnanie):
save("tenip.dat"),
retracL-others,
save(Fname),
assert(saved(Fnaxne)),
retractdesign.
consult("temp.dat"),!.

get-line-no(N):
retract(menuno(N)),
NI =N+ 1,
assert(menuno(N 1)),!.

resetjline_no:
retract(menunoL_)),
asser(menuno(l)),!.

create-blanks(O,.....
create....blanks(l," ").
create-blanks(NBlanks) :-Ni I N - 1,

create-banks(N1 Nblanks),
concat(Nblanks," ",Blanks),!.
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menu(t,"Load C Schema").
menu(1,"Load Design Data").
menu(1 ,"Update Data").
menu(1,"Save Design Data").
menu(1,-"").
menu(1 ,"Quit").

menu(2,"").
menu(2,"").
menu(2,"").
menu(2,"Quit").

menu(3,"Add data").
menu(3,"Change data").
menu(3," View data").
menu(3,"").
menu(3,"Quit").

1* Process Planning Rules follow /

create..pp-data:
assert(product(topl ,top, 15)),fail,!.

create-pp..ata:
kind-of(Name,top),
product(Name,Qty),
assert(ready(1,Name,saO,1 ,1,1)),
check-cut(tcutName,Qty,sa,Locl),
check-screw(tcrew,Name,Qty,ocl ,Loc2),
check-bracket(tbracketName,QtyLoc2,Loc 3),
check-weld(tweldName,QtyLoc3,Loc4),
check-assembly(tassemble,Name,QtyLo4j,fail,!.
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create...pp-data
kind-of(Nme,top),
product(Nme,Qty),
kind--of(Naniceg),
assert(ready(1,Name,saO0,1, 1,1)),
check-ut(cutName,Qty,saLocl),
check-screw(lscrew,Nanie,Qty,ocl1,Loc2),
check bracket(Ibracket,Name,Qty,Loc2,L4c3),
check-wld(IweldNam,QtyLoc3,Loc4),
check-assembly~lassemble,Name,Qty,Lo4j_,fail,!.

ceate..jp..data:
retract-others,
retract-design,
retract-pp,
retract-pp-rest,
save(" sched.dat"),!I

chcksut(tcut,Nane,Qty,Oldl,a):
asscrt(waiting( 1,Name,Oldla, 1,Qty)),!.

chck....cutzIcut,Name,Qty,OldI,a):
assert(waiting( 1,Name,Qldl,a,2,Qty)),!.

check-cut(cut,_,.,Oldl,Oldl) :-!L

check-scrw(scrw,Nanie,Qty,Oldl,e):
designL,connector,Conn),
design(Conn,screw),
concat(Oldl,"e",Trans),
assert(waiting( 1,Nane,OldlTrans,O, 1)),
assert(waiting( 1,Name,Trans,e, 1 ,Qty)),!.

check-screw(tscrew,,Od,Old) :-!.

check-screw(screw,Name,Qty,Oldl,e):
design(Name,connector,Conn),
design(Conn,screw),
concat(Oldl,"e",Trans),
assert(waiting( 1,Name,Oldl,Trans,O, 1)),
assert(waiting(1 ,Nani,Trans,e,2,Qty)),!.

check..scew~iscrew,_,Od,old) :-!.
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check-bracket(tbracket,Naine,Qty,Oldl,b)
design-,connectorConn),
design(Conn,brcket),
concat(Oldl,"b",Trans),
assert(waiting(1 ,Name,Oldl,Trans,O, 1)),
assert(waiting( 1,Name,Trans,b, 1,Qty)),!.

checkjracket(tbrackt,,Od,Oldl) :!

check bracketobracketName,Qty,Oldl,b):
design(Name,connectorConn),
design(Conn,bracket),
concat(Oldl,"b",Trans),
asser(waiting( I,Name,OldI,Trans,O, 1)),
asscrt(waiting( 1,NaieTrans,b,2,Qty)),!.

check-racket(bracket,-,Od,ldl) :!

check-weld(tweld,Name,Qty,Oldl,c):
designL,connector,Conn),
design(Conn,.,weld),
concat(Oldl,"c",Trans),
asscrt(waiting(1 ,Name,QldITrans,O, 1)),
assert(waiting(1,Naxne,Trans,c, I ,Qty)),!.

chck-weld(tweld,,Od,Oldl) :-!.

check-weld~lweld,Name,Qty,Oldl,c):
design(Name,connector,Conn),
design(Conn,,weld),
concat(Oldl,"c",Trans),
assert(waiting( 1 Name,OldI,Trans,O, 1)),
assert(waiting( 1,Nanie,Trans,c,2,Qty)),!.

check-weldlweld,,Od,Qldl) :-!L

check...assembly(tasscrnble,Name,Qty,Oldl,d):
designL,connector,Conn),
design(Conn,.screw),
concat(Oldl,"d",Trans),
assert(waiting(1 ,Name,Oldl,Trans,O,1)),
assert(waiting( 1,Name,Trans,d,1 ,Qty)),!.
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check-assembly~tassenble,Name,Qty,OldJ,d):
design-,connector,Conl),
design(Conn..bracket),
concat(OldI,"d",Trans),
assert(waiting(1 ,Nanme,OldLTrans,O, 1)),
assert(waiting(1 ,Name,Trans,d, 1,Qty)),!.

check-assembly(tssemble,..,Oldl,Oldl) :-!.

check~assembly(lasseinble,Nam,Qty,Oldl,d):
design(Name,connector,Confl),
design(Conn.,screw),
concat(Oldl,"d",Trans),
assert(waiting(1 ,Name,Oldl,Trans,O, 1)),
assert(waiting( 1,Nanie,Trans,d,2,Qty)),!.

check~assembly~lassemble,Namnc,Qty,Oldl,d):
design(Namecconnector,Comi),
design(Conn,,bracket),
concat(Oldl,"d",Trans),
assert(waiting( I,Name,Oldl,Trans,O, 1)),
assert(waiting(1 ,Name,Trans,d,2,Qty)),!.

checkLassembly(1assemble,.,Od,Old1) :-!.

1* Scheduling Rules follow */

finished :-not(eadyC_,,,_.J),

not(stillworkIng),!.

still-worldng: workngL ,....,,-,.,Time),Time > 0.
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start: do-retractc(T,
TI =T+ 1,
display-~start,
box(2000,27000,4500,32000,1 11,11),
writedevice(screen),
gwrite(2,69,"Tiznc',6,O),
strjnt(Tirne,TI),
gwrite(2,74,Time,12,O),
assert(clock(T1)),
available,
pr-report,
writedevice(screen),
not(display-woring),
wfs2,
partinished,!.

do-retractc(T:- retract(clockMr),!.

available not(cansched),!.

available repeat,
get-next,
do -retractl(Cost,P,Name,Mt,Tool,Mn,Time),
do_rezractw(Mt,Mn,O,Cost),
avail(PNanie,Mt,Tool,Mn,Tiine,Cost),
not(cansched),!.

can-sched :-rady(P,c,_,,_J,
not(waiingK.,,,c,...),
workin ,.____,)!

can-sched: readyPd,__,

can-sched: readyL,,Mt,~,_,
Mt <> "c", Mt <>""

dorertl(st,,m,M,T,n,Tine

d-retracts(Cost,P,Name,Mt,Tool,Mn,Time)),!

do-retratwL-,,9999) L-!
do_retractw(MtMnDJ rerct(worldng(Mt~n,-,,-,D)),!.
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r -iiavail(

avail(P,Naze,MtjTool,Mn,Time,-):
avail 2 (PNamMt,Too,Mn,Time,OrgquanQuanSe),
Quan I = Quan - 1,
Seql =Seq + 1,
display-eady(PMt,Qrg.quan,Seq),
QuanI > 0,
assertz(ready(P,Name,Mt,Tool,Org-quanQuanl1,Seq 1)),
retract-duplicates(P,NameMt),!.

atva 2 (PName,Tool~m,Time,Org-quan,QanSe):
retract(Teady(PNaneMt,Tool,Org..quan,QuanSeq)),
assert(woring(Mt,Mn,Tool,PName,SeqTime)),
clear...qs(MtP,Quan),!.

retract-duplicates(PName,c)
ready(Pame2,c,,,J,

r Nazne2 <> Name,
retract(rady(PName2,c,,,J),fail,!.

retract-duplicates(P,Name,d) :
ready(PName2,,,,,),
Name2 <> Name,
retract(ready(PNae2,d,,,J),fail,!.

retract duplicates_,j -!

geLnext: assert(least(9999,O,x,x,O,O,0)),
ready(PNane,c,Too,,,_),

fig-ost(PName,c,Tool,Cost,Mn,Time req),
least(X,YNZA,B,C),
Cost < X,
do--etractl(X,Y,NZA,B,C),
assert(least(CostP,Naxne,c,Too,Mn,Timereq)),
fail,!.
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geLnext
rady(P,Name,d,Too,,),

fig-ost(P,Name,dToo1,Cost,Mn,Time-req),
least(X,Y,NZ,A,B,C),
Cost < X,
doMactl(X,Y,N,Z,A,B,C),
assert(least(Cost,P,Name,d,Tool,Mn,Timej -eq)),
fail,!.

geLnext :
rvdy(P,Name,Mt,Tool,,.,)
Mt <> "c", Mt <>""
fig-ost(PName,Mt,Tool,CostMn,Tilne-req),
least(X,Y,N,Z,A,B,C),
Cost < X
dojetractl(X,YNZ,A,B,C),
assert(least(CostPName,Mt,Tool,Mn,Time-req)),
fail,!.

get-next :-!.

figsost(PName,Mt,Tool,CostMn,Time-req):

wordng(Mt,,,P,Name,,Time),Time > 0,
dline(P,D),
resource(MtTool,Mn,Time-req),
Cost = D * Time-req - 3,!.

fig-cost(P,Name,Mt,Tool,Cost,Mn,Timej-eq):
workingtMn,,,Name,,O),
dline(P,D),
resource(Mt,Tool,Mn,Time-req),
Cost = D * Time-req - 2,!.

fig-cost(P,,Mt,Tool,Cost,Mn,Timejcrq):

dline(P,D),
resource(Mt,ToolMn,Time-req),
Cost =D * ie-req - 1,!1.
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fig~sost(P,,Mt,Tool,Cost,Mn,Time-req):

dline(PD),
resource(Mt,Tool,Mn,Time-req),
Cost =D *Tmereq,!.

part~finished: working(MtMnToolPName,SeqTimeieft),
Timejeft > 0,
adjtiin(MtMn,ToolP,Name,Seq,Timejeft,Newjine),
New-tim = 0,
clear .niach(Mt,Mn),
not(ready(P,NameMt,Tool,,J),
check -working(Mt,P,Nane),
clear...qs(MtPj ),
display-finished(P,Mt),
do -retractwt(P,Namne,M),
fail,!.

part_finished :-!L

check-working(Mt,P,Name):
wor~dng(Mt,,P,Name,,Time),Time > 0,!,fail.

checkworkngL-,,J :

do~retracwt(P,c) :,c
rtact(waiting(P,Nam,c,Newjnt,New-tool,Newquan)),

Org-quan = New-quan,
assert(ready(P,me,New-mt,New-jool,Org-quan,New-quan,I )),
display-rady(P,Newjiit,Qrg-quan, 1),!.

doj-etractwt(P,Name,Mt):
clear -start(P),
retract(waiting(PName,Mt,Newnnt,New-tool,New-quan)),
Org.quan = New-quan,
asser(ready(P,Name,New-mt,New-tool,Org-quan,New-quan,1)),
display-rady(P,Newjrn,Org-quan, 1),!.

adjjime(Mt,Mn,Tool,P,Naine,Seq,Timeieft,New-time):
retract(working(MtMnToolP,Name,Seq,Time left)),
New-tim = Timejeft - 1,
asserta(working(MtMn,Tool,PName,Seq,New-tme)),!.

draw-xnach2 :-not(draw-machines), 1.
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draw...machines: resource(Type,,Num,
locate(Type,Xpos,Ypos),
MachY = Ypos + ((Nuin - 1) * 1500),
MachX = Xpos,
ToX = MachX + 1000,
ToY = MacbY + 1000,
box(MachXMachY,ToX,ToY,5,5,0),fail,!.

displayjeady(P,Mt,Quan,Seq):
Iocaze(Mz,Xpos,Ypos),
QueueY = Ypos + ((P - 1) * 750), ToY = QueueY + 500,
QueueX = Xpos - 2000, ToX = QueueX + 1000,
pcolor(P,CoI),Pr-- Col,
box(QueueXQueueY,ToX,ToY,0,0, 1),
box(QueueX,QueueY,ToX,ToY,Pr,Pr,0),
NewX I = QueueX + 4000, NewX2 = ToX + 4000,
box(NcwX 1,QueueY,NewX2,Toy,Pr,Pr,0),
Ratio =(((Seq - 1) * 1000) div Quan) mod 1000,
Rem =1000 - Ratio,
NewX3 = QueueX + Ratio, NewX4 = NewXlI + Rem,
box(NewX3,QueueY,ToX,ToY,Pr,Pr, 1),
box(NewX4,QueueY,NewX2,ToY,Pr,Pr, 1),!.

displayjready-,-.,J:-!.

display_..working: working(MtMn,,P,,,Time),Time > 0,
display jras(Mt,P,Time),
locate(Mt,Xpos,Ypos),
MacbY= Ypos + ((Mn - 1) * 1500) + 250,
MachX= Xpos; + 250,
ToX = MachX + 500,
ToY = MacbY + 500,
pcolor(PCol),Pr=_ Coll
box(MacbX,MachY,ToX,ToY, 1,Pr,l),
fail,!.

clcar...qs(Mt,P,1) :- clear...queue(Mt,P),!.
clear..qst ,-,)
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clear-queue(Type,Num):
displayjrans(Type,0,1),
displayjrans(Type,0,2),
displayjrans(rype,0,3),
locate(Type,Xp,Ypos),
MachY = Ypc,- + ((Num - 1) *750),

MachX = Xpo. - 2000,
ToX = MacbX + 1000,
ToY = MacbY + 500,
pcolor(Num,Col),Pr=- Col,
box(MachXMachY,ToX,ToY,O,0, 1),
box(MachX,MachYToX,ToY,Pr,Pr,0),
NewXl = MachX + 4000,
NewX2 = ToX + 4000,
box(NewXl ,MachY,NewX2,ToY,0,0,1),
box(NewX 1,MachY,NewX2,ToYPr,Pr,0),!.

clear-queueL-,_ :-!.

clear -mach(Type,Num):
locate(Type,Xpos,Ypos),
MacbY = Ypos + ((Num - 1) * 1500),
MachX = Xpos,
ToX = MachX + 1000,
ToY = MacbY + 1000,
box(MachX,MachY,ToX,ToY,0,0, 1),
box(MachX,MacbY,ToX,ToY,5,5,0),!.

clear-mach-j :-!.

draw..queues: ready(P,,,,
locateC_,Xpos,Ypos),
QueueY = Ypos + ((P - 1) * 750), ToY =QueueY + 500,
QueueX = Xpos -2000, ToX = QueueX + 1000,
pcolor(P,Col),Pr-- Col,
box(QueueX,QueueY,ToX,ToY,Pr,Pr,0),
NewXl = QuecX + 4000, NewX2 = ToX + 4000,
box(NewXl ,QueueY,NewX2,Toy,Pr,Pr,0),fail,.1
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display-sransL 0-,)

displayjras(Type,P,Num):
reorceType,_,Time),N= Time - Num + 1,
tras(Type,N,FromX,FromY,IncX,IncY),
draw-trans(FromX,FromY,lncX,IncY,P),!.

display..SrnsL-- :- *-

drawj-rans(C,D,E,F,P) pcolor(P,Col),Pr-- Col,
Cl = CD = D,El =C +200,F1 = D +200,
box(C1 ,D 1,El1,F1 ,Pr,Pr, 1),
C2 = Cl + E,D2 = DI + F,E2 = C2 + 200,F2 = D2 + 200,
box(C2,D2,E2,F2,Pr,Pr, 1),
C3 = C2 + E,D3 = D2 + F,E3 = C3 + 200,F3 = D3 + 200,
box(C3,D3,E3,F3,Pr,Pr,1),
C4 = C3 + E,D4 = D3 + F,E4 = C4 + 200,F4 = D4 + 200,
box(C4,D4,E4,F4,Pr,Pr, 1),
C5 = C4 + ED5 = D4 + F,E5 = C5 + 200,F5 = D5 + 200,
box(C5,D5,E5,F5,Pr,Pr, 1),!.

display-start-rayn-s,-,)
pcolor(P,Col),Pr-- Col,
PosY= 13500 + ((P - 1) * 750),ToY= PosY + 500,
PosX=2500,ToX=PosX + 1000,
box(PosX,PosY,ToX,ToY,Pr,Pr,l1),fail,!.

display-start: ready(P,,sb,,,,-j,
pcolor(P,Col),Pr-- Col,
PosY= 13500 + ((P - 1) * 750),ToY= PosY + 500,
PosX=2500,ToX=PosX + 1000,
box(PosXPosY,ToX,ToY,Pr,Pr,l1),fail,!.

display..start :-ready(P,,sc,,,J,
pcolor(P,Col),Pr-- Col,
PosY=13500 + ((P - 1) * 750),ToY= PosY + 500,
PosX=2500,ToX=PosX + 1000,
box(PosX,PosYToXToY,Pr,Pr,l1),fail,!.
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display-start: ready(P,s,,J,
pcolor(PCoI)P~r= Col,
PosY= 13500 + ((P - 1) * 750),ToY= PosY + 500,
PosX=2500,ToX=PosX + 1000,
box(PosX,PosY,ToX,ToY,Pr,Pr,l1),fail,!.

display-..start L-!

clear -start(P)
PosY=13500 + ((P - 1) * 750) - 1,ToY= PosY + 502,
PosX=2500,ToX=PosX + 1002,
box(PosX,PosY,ToXToY,0,0, 1),!.

display-inisbed(P,d)
pcolor(P,Col),Pr-- Col,
PosY= 13500 + ((P - 1) * 750),ToY= PosY + 500,
PosX=28500,ToX=PosX + 1000,
box(PosX,PosY,ToX,ToY,Pr,Pr, 1),!.

displayffuushed_,_:-!.

wfs2 not(keypressed),key('g'),!1.
wfs2 :-keypressedjreadchar(C),

key(X),retract(key(X)),assert(key(C)),!.
wfs2: wait (2000),wfs2.

prinLreport :
writedevice(dat),
nl,clock(Time),
write('clock period - "),write(Time),nl,
write("working processes - ",l
not(prinLworking),
writedevice(screen),!.

print-woring: working(AB,CDNEF),F > 0,
write(D),write('")
write(N),write('")
write(A),write(" )

write(C),write("")
write(B),write('")
write(E),write(" ,

write(F),nI,fail,!.
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/* Exception Rules follow *

validate_daza(tolerance,Val):
pp-..except(tolerance,Best-tol),
swtreal(Bestol,Bt),
sWtreal(Val,V),
V <Bt,
message(toleraceVal,Besttol),! ,fail.

validate.-data(radius,Rad):
pp-except(radius,Ba-rad),
str real(Rad,R),
sWtreal(Badrad,B),
R =B,
message(radius,Rad,Bad.rad),! ,fail.

validate_dazaftype,Type):
machine-used(Type,Mach),
sched-except(machine,Mach,Msg),
message(machine,MachMsg),! ,Ail.

validate-data_j :-!L

message~tolerance,Tol,Bes..tol):
gotowindow(4),
clearwindow,
gwrite(O,2,"The value of the",l,O),
gwrite(O,19,"tolerance",4,O),
gwrite(O,29,"for this project is too",l,O),
gwrite(l,2,"restrictive. A value of ",l1,O),
Bt = Bestjol, T = Tol,
str len(Bt,Btjen),
gwrite(l ,26,Bt,4,O),
Pos =27 + Blen,
gwrite(l,Pos,"or greater is far",l1,O),
gwrite(2,2,'less costly than the value", 1,0),
gwrite(2,29,T,4,O),
gwrite(3,2,"Press 'ENTER' to continue",4,O),
readchartj),!.



message(radiusadj-:
gotowindow(4),
clearwindow,
gwrite(0,2,"The value of the", 1,0),
gwrite(O, 19,"radius",4,0),
gwrite(0,26,"for this project is", 1.0),
gwrite(l,2,"too expensive. A value of ",,),
gwrite(1 ,28," 1.5",4,0),
gwrite(1 ,32,"or",1 ,0),
gwrite(1,35," 1.75",4,0),
gwrite(1,40,"is far less", 1,0),
gwrite(2,2,"costly than the value",1,0),
R =Rad,
gwrite(2,24,R,4,O),
gwrite(3,2,"Press 'ENTER' to continue",4,0),
readchar(-j,!.

message(niachine,.,Msg):
gotowindow(4),
clearwindow,
gwrite(0,2,"Thie machine required for this operation is ",,),
Msgs = Msg,
gwrite(1 ,2,Msgs,4,0),
gwrite(2,2,"Please revise your design accordingly.", 1,O),
gwrite(3,2,"Press 'ENTER' to continue",4,O),
readcharU,!.

gwrite(R,C,S,Color,0):-
cursor(R,C),attribute(Color),write(S).

gwriteL-,,",.. ):-!.
gwrite(R,C,S,Color, ):-
cursor(R,C),attribute(Color),
frontchar(S,Ch,Sl1),write(Ch),
R1=R+1,
gwrite(R 1,C,S 1,Color, 1).

repeat.
repeat repeat.
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setEGApalette(L):-
X='012345678901234567",
ptr-dword(X,SegmentOffset),
putinlist(L,ScgmenLOffset),
bios(S 1O,reg($1002,O,,Offsct,O,O,O,Segment),J).

putinlist([],..:-!.
putinlist([ByzeIT,Segment,Offset):-

niembyte(Segrncnt,Offset,Byte),
Offset2=-Offset+I,
putinlst(T,Segment,Offset2).
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